ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undif3ss GIF version

Theorem undif3ss 3368
Description: A subset relationship involving class union and class difference. In classical logic, this would be equality rather than subset, as in the first equality of Exercise 13 of [TakeutiZaring] p. 22. (Contributed by Jim Kingdon, 28-Jul-2018.)
Assertion
Ref Expression
undif3ss (𝐴 ∪ (𝐵𝐶)) ⊆ ((𝐴𝐵) ∖ (𝐶𝐴))

Proof of Theorem undif3ss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elun 3248 . . . 4 (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
2 eldif 3111 . . . . 5 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐶))
32orbi2i 752 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
4 orc 702 . . . . . . 7 (𝑥𝐴 → (𝑥𝐴𝑥𝐵))
5 olc 701 . . . . . . 7 (𝑥𝐴 → (¬ 𝑥𝐶𝑥𝐴))
64, 5jca 304 . . . . . 6 (𝑥𝐴 → ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
7 olc 701 . . . . . . 7 (𝑥𝐵 → (𝑥𝐴𝑥𝐵))
8 orc 702 . . . . . . 7 𝑥𝐶 → (¬ 𝑥𝐶𝑥𝐴))
97, 8anim12i 336 . . . . . 6 ((𝑥𝐵 ∧ ¬ 𝑥𝐶) → ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
106, 9jaoi 706 . . . . 5 ((𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
11 simpl 108 . . . . . . 7 ((𝑥𝐴 ∧ ¬ 𝑥𝐶) → 𝑥𝐴)
1211orcd 723 . . . . . 6 ((𝑥𝐴 ∧ ¬ 𝑥𝐶) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
13 olc 701 . . . . . 6 ((𝑥𝐵 ∧ ¬ 𝑥𝐶) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
14 orc 702 . . . . . . 7 (𝑥𝐴 → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
1514adantr 274 . . . . . 6 ((𝑥𝐴𝑥𝐴) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
1614adantl 275 . . . . . 6 ((𝑥𝐵𝑥𝐴) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
1712, 13, 15, 16ccase 949 . . . . 5 (((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
1810, 17impbii 125 . . . 4 ((𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
191, 3, 183bitri 205 . . 3 (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
20 elun 3248 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
2120biimpri 132 . . . . 5 ((𝑥𝐴𝑥𝐵) → 𝑥 ∈ (𝐴𝐵))
22 pm4.53r 741 . . . . . 6 ((¬ 𝑥𝐶𝑥𝐴) → ¬ (𝑥𝐶 ∧ ¬ 𝑥𝐴))
23 eldif 3111 . . . . . 6 (𝑥 ∈ (𝐶𝐴) ↔ (𝑥𝐶 ∧ ¬ 𝑥𝐴))
2422, 23sylnibr 667 . . . . 5 ((¬ 𝑥𝐶𝑥𝐴) → ¬ 𝑥 ∈ (𝐶𝐴))
2521, 24anim12i 336 . . . 4 (((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)) → (𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥 ∈ (𝐶𝐴)))
26 eldif 3111 . . . 4 (𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴)) ↔ (𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥 ∈ (𝐶𝐴)))
2725, 26sylibr 133 . . 3 (((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)) → 𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴)))
2819, 27sylbi 120 . 2 (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) → 𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴)))
2928ssriv 3132 1 (𝐴 ∪ (𝐵𝐶)) ⊆ ((𝐴𝐵) ∖ (𝐶𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wo 698  wcel 2128  cdif 3099  cun 3100  wss 3102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator