ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodmodc GIF version

Theorem prodmodc 11933
Description: A product has at most one limit. (Contributed by Scott Fenton, 4-Dec-2017.) (Modified by Jim Kingdon, 14-Apr-2024.)
Hypotheses
Ref Expression
prodmo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
prodmo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
prodmodc.3 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1))
Assertion
Ref Expression
prodmodc (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚))))
Distinct variable groups:   𝐴,𝑓,𝑗,𝑘,𝑚,𝑥   𝐵,𝑓,𝑗,𝑚   𝑓,𝐹,𝑘,𝑚,𝑥   𝑗,𝐺,𝑥   𝜑,𝑓,𝑘,𝑚,𝑥   𝑥,𝑛   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑗,𝑛)   𝐴(𝑦,𝑛)   𝐵(𝑥,𝑦,𝑘,𝑛)   𝐹(𝑦,𝑗,𝑛)   𝐺(𝑦,𝑓,𝑘,𝑚,𝑛)

Proof of Theorem prodmodc
Dummy variables 𝑎 𝑔 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . . . . 8 (((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → 𝐴 ⊆ (ℤ𝑚))
2 simplr 528 . . . . . . . 8 (((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)
3 simprr 531 . . . . . . . 8 (((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → seq𝑚( · , 𝐹) ⇝ 𝑥)
41, 2, 33jca 1180 . . . . . . 7 (((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥))
54reximi 2604 . . . . . 6 (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥))
6 simpll 527 . . . . . . . 8 (((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → 𝐴 ⊆ (ℤ𝑚))
7 simplr 528 . . . . . . . 8 (((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)
8 simprr 531 . . . . . . . 8 (((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → seq𝑚( · , 𝐹) ⇝ 𝑧)
96, 7, 83jca 1180 . . . . . . 7 (((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑧))
109reximi 2604 . . . . . 6 (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑧))
11 fveq2 5583 . . . . . . . . . . . 12 (𝑚 = 𝑤 → (ℤ𝑚) = (ℤ𝑤))
1211sseq2d 3224 . . . . . . . . . . 11 (𝑚 = 𝑤 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐴 ⊆ (ℤ𝑤)))
1311raleqdv 2709 . . . . . . . . . . 11 (𝑚 = 𝑤 → (∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ↔ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴))
14 seqeq1 10602 . . . . . . . . . . . 12 (𝑚 = 𝑤 → seq𝑚( · , 𝐹) = seq𝑤( · , 𝐹))
1514breq1d 4057 . . . . . . . . . . 11 (𝑚 = 𝑤 → (seq𝑚( · , 𝐹) ⇝ 𝑧 ↔ seq𝑤( · , 𝐹) ⇝ 𝑧))
1612, 13, 153anbi123d 1325 . . . . . . . . . 10 (𝑚 = 𝑤 → ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ↔ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))
1716cbvrexvw 2744 . . . . . . . . 9 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ↔ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))
1817anbi2i 457 . . . . . . . 8 ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))
19 reeanv 2677 . . . . . . . 8 (∃𝑚 ∈ ℤ ∃𝑤 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))
2018, 19bitr4i 187 . . . . . . 7 ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ↔ ∃𝑚 ∈ ℤ ∃𝑤 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))
21 simprl3 1047 . . . . . . . . . . . . 13 (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → seq𝑚( · , 𝐹) ⇝ 𝑥)
2221adantl 277 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → seq𝑚( · , 𝐹) ⇝ 𝑥)
23 prodmo.1 . . . . . . . . . . . . 13 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
24 prodmo.2 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2524adantlr 477 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
26 simprll 537 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝑚 ∈ ℤ)
27 simprlr 538 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝑤 ∈ ℤ)
28 simprl1 1045 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → 𝐴 ⊆ (ℤ𝑚))
2928adantl 277 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝐴 ⊆ (ℤ𝑚))
30 simprr1 1048 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → 𝐴 ⊆ (ℤ𝑤))
3130adantl 277 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝐴 ⊆ (ℤ𝑤))
32 eleq1w 2267 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
3332dcbid 840 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
34 simprl2 1046 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)
3534ad2antlr 489 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) ∧ 𝑘 ∈ (ℤ𝑚)) → ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)
36 simpr 110 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) ∧ 𝑘 ∈ (ℤ𝑚)) → 𝑘 ∈ (ℤ𝑚))
3733, 35, 36rspcdva 2883 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) ∧ 𝑘 ∈ (ℤ𝑚)) → DECID 𝑘𝐴)
38 simprr2 1049 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴)
3938ad2antlr 489 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) ∧ 𝑘 ∈ (ℤ𝑤)) → ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴)
40 simpr 110 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) ∧ 𝑘 ∈ (ℤ𝑤)) → 𝑘 ∈ (ℤ𝑤))
4133, 39, 40rspcdva 2883 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) ∧ 𝑘 ∈ (ℤ𝑤)) → DECID 𝑘𝐴)
4223, 25, 26, 27, 29, 31, 37, 41prodrbdc 11929 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → (seq𝑚( · , 𝐹) ⇝ 𝑥 ↔ seq𝑤( · , 𝐹) ⇝ 𝑥))
4322, 42mpbid 147 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → seq𝑤( · , 𝐹) ⇝ 𝑥)
44 simprr3 1050 . . . . . . . . . . . 12 (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → seq𝑤( · , 𝐹) ⇝ 𝑧)
4544adantl 277 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → seq𝑤( · , 𝐹) ⇝ 𝑧)
46 climuni 11648 . . . . . . . . . . 11 ((seq𝑤( · , 𝐹) ⇝ 𝑥 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧) → 𝑥 = 𝑧)
4743, 45, 46syl2anc 411 . . . . . . . . . 10 ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝑥 = 𝑧)
4847expcom 116 . . . . . . . . 9 (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → (𝜑𝑥 = 𝑧))
4948ex 115 . . . . . . . 8 ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) → (((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)) → (𝜑𝑥 = 𝑧)))
5049rexlimivv 2630 . . . . . . 7 (∃𝑚 ∈ ℤ ∃𝑤 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)) → (𝜑𝑥 = 𝑧))
5120, 50sylbi 121 . . . . . 6 ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → (𝜑𝑥 = 𝑧))
525, 10, 51syl2an 289 . . . . 5 ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∧ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧))) → (𝜑𝑥 = 𝑧))
53 prodmodc.3 . . . . . . . . . 10 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1))
5423, 24, 53prodmodclem2 11932 . . . . . . . . 9 ((𝜑 ∧ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) → 𝑧 = 𝑥))
55 equcomi 1728 . . . . . . . . 9 (𝑧 = 𝑥𝑥 = 𝑧)
5654, 55syl6 33 . . . . . . . 8 ((𝜑 ∧ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
5756expimpd 363 . . . . . . 7 (𝜑 → ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧))
5857com12 30 . . . . . 6 ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚))) → (𝜑𝑥 = 𝑧))
5958ancoms 268 . . . . 5 ((∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧))) → (𝜑𝑥 = 𝑧))
6023, 24, 53prodmodclem2 11932 . . . . . . 7 ((𝜑 ∧ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
6160expimpd 363 . . . . . 6 (𝜑 → ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧))
6261com12 30 . . . . 5 ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))) → (𝜑𝑥 = 𝑧))
63 reeanv 2677 . . . . . . . 8 (∃𝑚 ∈ ℕ ∃𝑤 ∈ ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1)))‘𝑤))) ↔ (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑤 ∈ ℕ ∃𝑔(𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1)))‘𝑤))))
64 exdistrv 1935 . . . . . . . . 9 (∃𝑓𝑔((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1)))‘𝑤))) ↔ (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1)))‘𝑤))))
65642rexbii 2516 . . . . . . . 8 (∃𝑚 ∈ ℕ ∃𝑤 ∈ ℕ ∃𝑓𝑔((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1)))‘𝑤))) ↔ ∃𝑚 ∈ ℕ ∃𝑤 ∈ ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1)))‘𝑤))))
66 oveq2 5959 . . . . . . . . . . . . . 14 (𝑚 = 𝑤 → (1...𝑚) = (1...𝑤))
6766f1oeq2d 5525 . . . . . . . . . . . . 13 (𝑚 = 𝑤 → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑤)–1-1-onto𝐴))
68 fveq2 5583 . . . . . . . . . . . . . 14 (𝑚 = 𝑤 → (seq1( · , 𝐺)‘𝑚) = (seq1( · , 𝐺)‘𝑤))
6968eqeq2d 2218 . . . . . . . . . . . . 13 (𝑚 = 𝑤 → (𝑧 = (seq1( · , 𝐺)‘𝑚) ↔ 𝑧 = (seq1( · , 𝐺)‘𝑤)))
7067, 69anbi12d 473 . . . . . . . . . . . 12 (𝑚 = 𝑤 → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) ↔ (𝑓:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑤))))
7170exbidv 1849 . . . . . . . . . . 11 (𝑚 = 𝑤 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑤))))
72 f1oeq1 5517 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝑓:(1...𝑤)–1-1-onto𝐴𝑔:(1...𝑤)–1-1-onto𝐴))
73 fveq1 5582 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑔 → (𝑓𝑗) = (𝑔𝑗))
7473csbeq1d 3101 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑔(𝑓𝑗) / 𝑘𝐵 = (𝑔𝑗) / 𝑘𝐵)
7574ifeq1d 3589 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝑔 → if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1) = if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1))
7675mpteq2dv 4139 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1)))
7753, 76eqtrid 2251 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1)))
7877seqeq3d 10607 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → seq1( · , 𝐺) = seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1))))
7978fveq1d 5585 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → (seq1( · , 𝐺)‘𝑤) = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1)))‘𝑤))
8079eqeq2d 2218 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝑧 = (seq1( · , 𝐺)‘𝑤) ↔ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1)))‘𝑤)))
8172, 80anbi12d 473 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝑓:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑤)) ↔ (𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1)))‘𝑤))))
8281cbvexvw 1945 . . . . . . . . . . 11 (∃𝑓(𝑓:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑤)) ↔ ∃𝑔(𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1)))‘𝑤)))
8371, 82bitrdi 196 . . . . . . . . . 10 (𝑚 = 𝑤 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑔(𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1)))‘𝑤))))
8483cbvrexvw 2744 . . . . . . . . 9 (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑤 ∈ ℕ ∃𝑔(𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1)))‘𝑤)))
8584anbi2i 457 . . . . . . . 8 ((∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))) ↔ (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑤 ∈ ℕ ∃𝑔(𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1)))‘𝑤))))
8663, 65, 853bitr4i 212 . . . . . . 7 (∃𝑚 ∈ ℕ ∃𝑤 ∈ ℕ ∃𝑓𝑔((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1)))‘𝑤))) ↔ (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))))
87 an4 586 . . . . . . . . . 10 (((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1)))‘𝑤))) ↔ ((𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑤)–1-1-onto𝐴) ∧ (𝑥 = (seq1( · , 𝐺)‘𝑚) ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1)))‘𝑤))))
8824ad4ant14 514 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑤)–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
89 breq1 4050 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑎 → (𝑗 ≤ (♯‘𝐴) ↔ 𝑎 ≤ (♯‘𝐴)))
90 fveq2 5583 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑎 → (𝑓𝑗) = (𝑓𝑎))
9190csbeq1d 3101 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑎(𝑓𝑗) / 𝑘𝐵 = (𝑓𝑎) / 𝑘𝐵)
9289, 91ifbieq1d 3594 . . . . . . . . . . . . . . 15 (𝑗 = 𝑎 → if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1) = if(𝑎 ≤ (♯‘𝐴), (𝑓𝑎) / 𝑘𝐵, 1))
9392cbvmptv 4144 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1)) = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑓𝑎) / 𝑘𝐵, 1))
9453, 93eqtri 2227 . . . . . . . . . . . . 13 𝐺 = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑓𝑎) / 𝑘𝐵, 1))
95 fveq2 5583 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑎 → (𝑔𝑗) = (𝑔𝑎))
9695csbeq1d 3101 . . . . . . . . . . . . . . 15 (𝑗 = 𝑎(𝑔𝑗) / 𝑘𝐵 = (𝑔𝑎) / 𝑘𝐵)
9789, 96ifbieq1d 3594 . . . . . . . . . . . . . 14 (𝑗 = 𝑎 → if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1) = if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 1))
9897cbvmptv 4144 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1)) = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 1))
99 simplr 528 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑤)–1-1-onto𝐴)) → (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ))
100 simprl 529 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑤)–1-1-onto𝐴)) → 𝑓:(1...𝑚)–1-1-onto𝐴)
101 simprr 531 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑤)–1-1-onto𝐴)) → 𝑔:(1...𝑤)–1-1-onto𝐴)
10223, 88, 94, 98, 99, 100, 101prodmodclem3 11930 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑤)–1-1-onto𝐴)) → (seq1( · , 𝐺)‘𝑚) = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1)))‘𝑤))
103 eqeq12 2219 . . . . . . . . . . . 12 ((𝑥 = (seq1( · , 𝐺)‘𝑚) ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1)))‘𝑤)) → (𝑥 = 𝑧 ↔ (seq1( · , 𝐺)‘𝑚) = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1)))‘𝑤)))
104102, 103syl5ibrcom 157 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑤)–1-1-onto𝐴)) → ((𝑥 = (seq1( · , 𝐺)‘𝑚) ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1)))‘𝑤)) → 𝑥 = 𝑧))
105104expimpd 363 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑤)–1-1-onto𝐴) ∧ (𝑥 = (seq1( · , 𝐺)‘𝑚) ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1)))‘𝑤))) → 𝑥 = 𝑧))
10687, 105biimtrid 152 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1)))‘𝑤))) → 𝑥 = 𝑧))
107106exlimdvv 1922 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (∃𝑓𝑔((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1)))‘𝑤))) → 𝑥 = 𝑧))
108107rexlimdvva 2632 . . . . . . 7 (𝜑 → (∃𝑚 ∈ ℕ ∃𝑤 ∈ ℕ ∃𝑓𝑔((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto𝐴𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1)))‘𝑤))) → 𝑥 = 𝑧))
10986, 108biimtrrid 153 . . . . . 6 (𝜑 → ((∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧))
110109com12 30 . . . . 5 ((∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))) → (𝜑𝑥 = 𝑧))
11152, 59, 62, 110ccase 967 . . . 4 (((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)))) → (𝜑𝑥 = 𝑧))
112111com12 30 . . 3 (𝜑 → (((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)))) → 𝑥 = 𝑧))
113112alrimivv 1899 . 2 (𝜑 → ∀𝑥𝑧(((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)))) → 𝑥 = 𝑧))
114 breq2 4051 . . . . . . 7 (𝑥 = 𝑧 → (seq𝑚( · , 𝐹) ⇝ 𝑥 ↔ seq𝑚( · , 𝐹) ⇝ 𝑧))
115114anbi2d 464 . . . . . 6 (𝑥 = 𝑧 → ((∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ↔ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)))
116115anbi2d 464 . . . . 5 (𝑥 = 𝑧 → (((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ↔ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧))))
117116rexbidv 2508 . . . 4 (𝑥 = 𝑧 → (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ↔ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧))))
118 eqeq1 2213 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = (seq1( · , 𝐺)‘𝑚) ↔ 𝑧 = (seq1( · , 𝐺)‘𝑚)))
119118anbi2d 464 . . . . . 6 (𝑥 = 𝑧 → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))))
120119exbidv 1849 . . . . 5 (𝑥 = 𝑧 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))))
121120rexbidv 2508 . . . 4 (𝑥 = 𝑧 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))))
122117, 121orbi12d 795 . . 3 (𝑥 = 𝑧 → ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚))) ↔ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)))))
123122mo4 2116 . 2 (∃*𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚))) ↔ ∀𝑥𝑧(((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)))) → 𝑥 = 𝑧))
124113, 123sylibr 134 1 (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710  DECID wdc 836  w3a 981  wal 1371   = wceq 1373  wex 1516  ∃*wmo 2056  wcel 2177  wral 2485  wrex 2486  csb 3094  wss 3167  ifcif 3572   class class class wbr 4047  cmpt 4109  1-1-ontowf1o 5275  cfv 5276  (class class class)co 5951  cc 7930  0cc0 7932  1c1 7933   · cmul 7937  cle 8115   # cap 8661  cn 9043  cz 9379  cuz 9655  ...cfz 10137  seqcseq 10599  chash 10927  cli 11633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-oadd 6513  df-er 6627  df-en 6835  df-dom 6836  df-fin 6837  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-seqfrec 10600  df-exp 10691  df-ihash 10928  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634
This theorem is referenced by:  fprodseq  11938
  Copyright terms: Public domain W3C validator