Step | Hyp | Ref
| Expression |
1 | | simpll 519 |
. . . . . . . 8
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → 𝐴 ⊆ (ℤ≥‘𝑚)) |
2 | | simplr 520 |
. . . . . . . 8
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) |
3 | | simprr 522 |
. . . . . . . 8
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → seq𝑚( · , 𝐹) ⇝ 𝑥) |
4 | 1, 2, 3 | 3jca 1167 |
. . . . . . 7
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) |
5 | 4 | reximi 2563 |
. . . . . 6
⊢
(∃𝑚 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) |
6 | | simpll 519 |
. . . . . . . 8
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → 𝐴 ⊆ (ℤ≥‘𝑚)) |
7 | | simplr 520 |
. . . . . . . 8
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) |
8 | | simprr 522 |
. . . . . . . 8
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → seq𝑚( · , 𝐹) ⇝ 𝑧) |
9 | 6, 7, 8 | 3jca 1167 |
. . . . . . 7
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) |
10 | 9 | reximi 2563 |
. . . . . 6
⊢
(∃𝑚 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) |
11 | | fveq2 5486 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑤 → (ℤ≥‘𝑚) =
(ℤ≥‘𝑤)) |
12 | 11 | sseq2d 3172 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑤 → (𝐴 ⊆ (ℤ≥‘𝑚) ↔ 𝐴 ⊆ (ℤ≥‘𝑤))) |
13 | 11 | raleqdv 2667 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑤 → (∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ↔ ∀𝑗 ∈ (ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴)) |
14 | | seqeq1 10383 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑤 → seq𝑚( · , 𝐹) = seq𝑤( · , 𝐹)) |
15 | 14 | breq1d 3992 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑤 → (seq𝑚( · , 𝐹) ⇝ 𝑧 ↔ seq𝑤( · , 𝐹) ⇝ 𝑧)) |
16 | 12, 13, 15 | 3anbi123d 1302 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑤 → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ↔ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) |
17 | 16 | cbvrexvw 2697 |
. . . . . . . . 9
⊢
(∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ↔ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)) |
18 | 17 | anbi2i 453 |
. . . . . . . 8
⊢
((∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) |
19 | | reeanv 2635 |
. . . . . . . 8
⊢
(∃𝑚 ∈
ℤ ∃𝑤 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) |
20 | 18, 19 | bitr4i 186 |
. . . . . . 7
⊢
((∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ↔ ∃𝑚 ∈ ℤ ∃𝑤 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) |
21 | | simprl3 1034 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → seq𝑚( · , 𝐹) ⇝ 𝑥) |
22 | 21 | adantl 275 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → seq𝑚( · , 𝐹) ⇝ 𝑥) |
23 | | prodmo.1 |
. . . . . . . . . . . . 13
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) |
24 | | prodmo.2 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
25 | 24 | adantlr 469 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
26 | | simprll 527 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝑚 ∈ ℤ) |
27 | | simprlr 528 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝑤 ∈ ℤ) |
28 | | simprl1 1032 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → 𝐴 ⊆ (ℤ≥‘𝑚)) |
29 | 28 | adantl 275 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝐴 ⊆ (ℤ≥‘𝑚)) |
30 | | simprr1 1035 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → 𝐴 ⊆ (ℤ≥‘𝑤)) |
31 | 30 | adantl 275 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝐴 ⊆ (ℤ≥‘𝑤)) |
32 | | eleq1w 2227 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) |
33 | 32 | dcbid 828 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑘 → (DECID 𝑗 ∈ 𝐴 ↔ DECID 𝑘 ∈ 𝐴)) |
34 | | simprl2 1033 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) |
35 | 34 | ad2antlr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) ∧ 𝑘 ∈ (ℤ≥‘𝑚)) → ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) |
36 | | simpr 109 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) ∧ 𝑘 ∈ (ℤ≥‘𝑚)) → 𝑘 ∈ (ℤ≥‘𝑚)) |
37 | 33, 35, 36 | rspcdva 2835 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) ∧ 𝑘 ∈ (ℤ≥‘𝑚)) → DECID
𝑘 ∈ 𝐴) |
38 | | simprr2 1036 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → ∀𝑗 ∈ (ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴) |
39 | 38 | ad2antlr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) ∧ 𝑘 ∈ (ℤ≥‘𝑤)) → ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴) |
40 | | simpr 109 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) ∧ 𝑘 ∈ (ℤ≥‘𝑤)) → 𝑘 ∈ (ℤ≥‘𝑤)) |
41 | 33, 39, 40 | rspcdva 2835 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) ∧ 𝑘 ∈ (ℤ≥‘𝑤)) → DECID
𝑘 ∈ 𝐴) |
42 | 23, 25, 26, 27, 29, 31, 37, 41 | prodrbdc 11515 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → (seq𝑚( · , 𝐹) ⇝ 𝑥 ↔ seq𝑤( · , 𝐹) ⇝ 𝑥)) |
43 | 22, 42 | mpbid 146 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → seq𝑤( · , 𝐹) ⇝ 𝑥) |
44 | | simprr3 1037 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → seq𝑤( · , 𝐹) ⇝ 𝑧) |
45 | 44 | adantl 275 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → seq𝑤( · , 𝐹) ⇝ 𝑧) |
46 | | climuni 11234 |
. . . . . . . . . . 11
⊢
((seq𝑤( · ,
𝐹) ⇝ 𝑥 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧) → 𝑥 = 𝑧) |
47 | 43, 45, 46 | syl2anc 409 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝑥 = 𝑧) |
48 | 47 | expcom 115 |
. . . . . . . . 9
⊢ (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → (𝜑 → 𝑥 = 𝑧)) |
49 | 48 | ex 114 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) → (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)) → (𝜑 → 𝑥 = 𝑧))) |
50 | 49 | rexlimivv 2589 |
. . . . . . 7
⊢
(∃𝑚 ∈
ℤ ∃𝑤 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)) → (𝜑 → 𝑥 = 𝑧)) |
51 | 20, 50 | sylbi 120 |
. . . . . 6
⊢
((∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → (𝜑 → 𝑥 = 𝑧)) |
52 | 5, 10, 51 | syl2an 287 |
. . . . 5
⊢
((∃𝑚 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∧ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧))) → (𝜑 → 𝑥 = 𝑧)) |
53 | | prodmodc.3 |
. . . . . . . . . 10
⊢ 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 1)) |
54 | 23, 24, 53 | prodmodclem2 11518 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) → 𝑧 = 𝑥)) |
55 | | equcomi 1692 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → 𝑥 = 𝑧) |
56 | 54, 55 | syl6 33 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧)) |
57 | 56 | expimpd 361 |
. . . . . . 7
⊢ (𝜑 → ((∃𝑚 ∈ ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧)) |
58 | 57 | com12 30 |
. . . . . 6
⊢
((∃𝑚 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) → (𝜑 → 𝑥 = 𝑧)) |
59 | 58 | ancoms 266 |
. . . . 5
⊢
((∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧))) → (𝜑 → 𝑥 = 𝑧)) |
60 | 23, 24, 53 | prodmodclem2 11518 |
. . . . . . 7
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧)) |
61 | 60 | expimpd 361 |
. . . . . 6
⊢ (𝜑 → ((∃𝑚 ∈ ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧)) |
62 | 61 | com12 30 |
. . . . 5
⊢
((∃𝑚 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))) → (𝜑 → 𝑥 = 𝑧)) |
63 | | reeanv 2635 |
. . . . . . . 8
⊢
(∃𝑚 ∈
ℕ ∃𝑤 ∈
ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤))) ↔ (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑤 ∈ ℕ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤)))) |
64 | | exdistrv 1898 |
. . . . . . . . 9
⊢
(∃𝑓∃𝑔((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤))) ↔ (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤)))) |
65 | 64 | 2rexbii 2475 |
. . . . . . . 8
⊢
(∃𝑚 ∈
ℕ ∃𝑤 ∈
ℕ ∃𝑓∃𝑔((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤))) ↔ ∃𝑚 ∈ ℕ ∃𝑤 ∈ ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤)))) |
66 | | oveq2 5850 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑤 → (1...𝑚) = (1...𝑤)) |
67 | 66 | f1oeq2d 5428 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑤 → (𝑓:(1...𝑚)–1-1-onto→𝐴 ↔ 𝑓:(1...𝑤)–1-1-onto→𝐴)) |
68 | | fveq2 5486 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑤 → (seq1( · , 𝐺)‘𝑚) = (seq1( · , 𝐺)‘𝑤)) |
69 | 68 | eqeq2d 2177 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑤 → (𝑧 = (seq1( · , 𝐺)‘𝑚) ↔ 𝑧 = (seq1( · , 𝐺)‘𝑤))) |
70 | 67, 69 | anbi12d 465 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑤 → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) ↔ (𝑓:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑤)))) |
71 | 70 | exbidv 1813 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑤 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑤)))) |
72 | | f1oeq1 5421 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (𝑓:(1...𝑤)–1-1-onto→𝐴 ↔ 𝑔:(1...𝑤)–1-1-onto→𝐴)) |
73 | | fveq1 5485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = 𝑔 → (𝑓‘𝑗) = (𝑔‘𝑗)) |
74 | 73 | csbeq1d 3052 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = 𝑔 → ⦋(𝑓‘𝑗) / 𝑘⦌𝐵 = ⦋(𝑔‘𝑗) / 𝑘⦌𝐵) |
75 | 74 | ifeq1d 3537 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = 𝑔 → if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 1) = if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)) |
76 | 75 | mpteq2dv 4073 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝑔 → (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 1)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1))) |
77 | 53, 76 | syl5eq 2211 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑔 → 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1))) |
78 | 77 | seqeq3d 10388 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑔 → seq1( · , 𝐺) = seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))) |
79 | 78 | fveq1d 5488 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑔 → (seq1( · , 𝐺)‘𝑤) = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤)) |
80 | 79 | eqeq2d 2177 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (𝑧 = (seq1( · , 𝐺)‘𝑤) ↔ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤))) |
81 | 72, 80 | anbi12d 465 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → ((𝑓:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑤)) ↔ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤)))) |
82 | 81 | cbvexvw 1908 |
. . . . . . . . . . 11
⊢
(∃𝑓(𝑓:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑤)) ↔ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤))) |
83 | 71, 82 | bitrdi 195 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑤 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤)))) |
84 | 83 | cbvrexvw 2697 |
. . . . . . . . 9
⊢
(∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑤 ∈ ℕ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤))) |
85 | 84 | anbi2i 453 |
. . . . . . . 8
⊢
((∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))) ↔ (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑤 ∈ ℕ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤)))) |
86 | 63, 65, 85 | 3bitr4i 211 |
. . . . . . 7
⊢
(∃𝑚 ∈
ℕ ∃𝑤 ∈
ℕ ∃𝑓∃𝑔((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤))) ↔ (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) |
87 | | an4 576 |
. . . . . . . . . 10
⊢ (((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤))) ↔ ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴) ∧ (𝑥 = (seq1( · , 𝐺)‘𝑚) ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤)))) |
88 | 24 | ad4ant14 506 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
89 | | breq1 3985 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑎 → (𝑗 ≤ (♯‘𝐴) ↔ 𝑎 ≤ (♯‘𝐴))) |
90 | | fveq2 5486 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑎 → (𝑓‘𝑗) = (𝑓‘𝑎)) |
91 | 90 | csbeq1d 3052 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑎 → ⦋(𝑓‘𝑗) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑎) / 𝑘⦌𝐵) |
92 | 89, 91 | ifbieq1d 3542 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑎 → if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 1) = if(𝑎 ≤ (♯‘𝐴), ⦋(𝑓‘𝑎) / 𝑘⦌𝐵, 1)) |
93 | 92 | cbvmptv 4078 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 1)) = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑓‘𝑎) / 𝑘⦌𝐵, 1)) |
94 | 53, 93 | eqtri 2186 |
. . . . . . . . . . . . 13
⊢ 𝐺 = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑓‘𝑎) / 𝑘⦌𝐵, 1)) |
95 | | fveq2 5486 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑎 → (𝑔‘𝑗) = (𝑔‘𝑎)) |
96 | 95 | csbeq1d 3052 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑎 → ⦋(𝑔‘𝑗) / 𝑘⦌𝐵 = ⦋(𝑔‘𝑎) / 𝑘⦌𝐵) |
97 | 89, 96 | ifbieq1d 3542 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑎 → if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1) = if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 1)) |
98 | 97 | cbvmptv 4078 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)) = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 1)) |
99 | | simplr 520 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴)) → (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) |
100 | | simprl 521 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴)) → 𝑓:(1...𝑚)–1-1-onto→𝐴) |
101 | | simprr 522 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴)) → 𝑔:(1...𝑤)–1-1-onto→𝐴) |
102 | 23, 88, 94, 98, 99, 100, 101 | prodmodclem3 11516 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴)) → (seq1( · ,
𝐺)‘𝑚) = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤)) |
103 | | eqeq12 2178 |
. . . . . . . . . . . 12
⊢ ((𝑥 = (seq1( · , 𝐺)‘𝑚) ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤)) → (𝑥 = 𝑧 ↔ (seq1( · , 𝐺)‘𝑚) = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤))) |
104 | 102, 103 | syl5ibrcom 156 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴)) → ((𝑥 = (seq1( · , 𝐺)‘𝑚) ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤)) → 𝑥 = 𝑧)) |
105 | 104 | expimpd 361 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴) ∧ (𝑥 = (seq1( · , 𝐺)‘𝑚) ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤))) → 𝑥 = 𝑧)) |
106 | 87, 105 | syl5bi 151 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤))) → 𝑥 = 𝑧)) |
107 | 106 | exlimdvv 1885 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (∃𝑓∃𝑔((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤))) → 𝑥 = 𝑧)) |
108 | 107 | rexlimdvva 2591 |
. . . . . . 7
⊢ (𝜑 → (∃𝑚 ∈ ℕ ∃𝑤 ∈ ℕ ∃𝑓∃𝑔((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤))) → 𝑥 = 𝑧)) |
109 | 86, 108 | syl5bir 152 |
. . . . . 6
⊢ (𝜑 → ((∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧)) |
110 | 109 | com12 30 |
. . . . 5
⊢
((∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))) → (𝜑 → 𝑥 = 𝑧)) |
111 | 52, 59, 62, 110 | ccase 954 |
. . . 4
⊢
(((∃𝑚 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) → (𝜑 → 𝑥 = 𝑧)) |
112 | 111 | com12 30 |
. . 3
⊢ (𝜑 → (((∃𝑚 ∈ ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) → 𝑥 = 𝑧)) |
113 | 112 | alrimivv 1863 |
. 2
⊢ (𝜑 → ∀𝑥∀𝑧(((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) → 𝑥 = 𝑧)) |
114 | | breq2 3986 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (seq𝑚( · , 𝐹) ⇝ 𝑥 ↔ seq𝑚( · , 𝐹) ⇝ 𝑧)) |
115 | 114 | anbi2d 460 |
. . . . . 6
⊢ (𝑥 = 𝑧 → ((∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ↔ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧))) |
116 | 115 | anbi2d 460 |
. . . . 5
⊢ (𝑥 = 𝑧 → (((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ↔ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)))) |
117 | 116 | rexbidv 2467 |
. . . 4
⊢ (𝑥 = 𝑧 → (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ↔ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)))) |
118 | | eqeq1 2172 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑥 = (seq1( · , 𝐺)‘𝑚) ↔ 𝑧 = (seq1( · , 𝐺)‘𝑚))) |
119 | 118 | anbi2d 460 |
. . . . . 6
⊢ (𝑥 = 𝑧 → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) |
120 | 119 | exbidv 1813 |
. . . . 5
⊢ (𝑥 = 𝑧 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) |
121 | 120 | rexbidv 2467 |
. . . 4
⊢ (𝑥 = 𝑧 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) |
122 | 117, 121 | orbi12d 783 |
. . 3
⊢ (𝑥 = 𝑧 → ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) ↔ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))))) |
123 | 122 | mo4 2075 |
. 2
⊢
(∃*𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) ↔ ∀𝑥∀𝑧(((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) → 𝑥 = 𝑧)) |
124 | 113, 123 | sylibr 133 |
1
⊢ (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)))) |