| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpll 527 | 
. . . . . . . 8
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → 𝐴 ⊆ (ℤ≥‘𝑚)) | 
| 2 |   | simplr 528 | 
. . . . . . . 8
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) | 
| 3 |   | simprr 531 | 
. . . . . . . 8
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → seq𝑚( · , 𝐹) ⇝ 𝑥) | 
| 4 | 1, 2, 3 | 3jca 1179 | 
. . . . . . 7
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) | 
| 5 | 4 | reximi 2594 | 
. . . . . 6
⊢
(∃𝑚 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) | 
| 6 |   | simpll 527 | 
. . . . . . . 8
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → 𝐴 ⊆ (ℤ≥‘𝑚)) | 
| 7 |   | simplr 528 | 
. . . . . . . 8
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) | 
| 8 |   | simprr 531 | 
. . . . . . . 8
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → seq𝑚( · , 𝐹) ⇝ 𝑧) | 
| 9 | 6, 7, 8 | 3jca 1179 | 
. . . . . . 7
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) | 
| 10 | 9 | reximi 2594 | 
. . . . . 6
⊢
(∃𝑚 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) | 
| 11 |   | fveq2 5558 | 
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑤 → (ℤ≥‘𝑚) =
(ℤ≥‘𝑤)) | 
| 12 | 11 | sseq2d 3213 | 
. . . . . . . . . . 11
⊢ (𝑚 = 𝑤 → (𝐴 ⊆ (ℤ≥‘𝑚) ↔ 𝐴 ⊆ (ℤ≥‘𝑤))) | 
| 13 | 11 | raleqdv 2699 | 
. . . . . . . . . . 11
⊢ (𝑚 = 𝑤 → (∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ↔ ∀𝑗 ∈ (ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴)) | 
| 14 |   | seqeq1 10542 | 
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑤 → seq𝑚( · , 𝐹) = seq𝑤( · , 𝐹)) | 
| 15 | 14 | breq1d 4043 | 
. . . . . . . . . . 11
⊢ (𝑚 = 𝑤 → (seq𝑚( · , 𝐹) ⇝ 𝑧 ↔ seq𝑤( · , 𝐹) ⇝ 𝑧)) | 
| 16 | 12, 13, 15 | 3anbi123d 1323 | 
. . . . . . . . . 10
⊢ (𝑚 = 𝑤 → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ↔ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) | 
| 17 | 16 | cbvrexvw 2734 | 
. . . . . . . . 9
⊢
(∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑧) ↔ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)) | 
| 18 | 17 | anbi2i 457 | 
. . . . . . . 8
⊢
((∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) | 
| 19 |   | reeanv 2667 | 
. . . . . . . 8
⊢
(∃𝑚 ∈
ℤ ∃𝑤 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) | 
| 20 | 18, 19 | bitr4i 187 | 
. . . . . . 7
⊢
((∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ↔ ∃𝑚 ∈ ℤ ∃𝑤 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) | 
| 21 |   | simprl3 1046 | 
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → seq𝑚( · , 𝐹) ⇝ 𝑥) | 
| 22 | 21 | adantl 277 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → seq𝑚( · , 𝐹) ⇝ 𝑥) | 
| 23 |   | prodmo.1 | 
. . . . . . . . . . . . 13
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) | 
| 24 |   | prodmo.2 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | 
| 25 | 24 | adantlr 477 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | 
| 26 |   | simprll 537 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝑚 ∈ ℤ) | 
| 27 |   | simprlr 538 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝑤 ∈ ℤ) | 
| 28 |   | simprl1 1044 | 
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → 𝐴 ⊆ (ℤ≥‘𝑚)) | 
| 29 | 28 | adantl 277 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝐴 ⊆ (ℤ≥‘𝑚)) | 
| 30 |   | simprr1 1047 | 
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → 𝐴 ⊆ (ℤ≥‘𝑤)) | 
| 31 | 30 | adantl 277 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝐴 ⊆ (ℤ≥‘𝑤)) | 
| 32 |   | eleq1w 2257 | 
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) | 
| 33 | 32 | dcbid 839 | 
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑘 → (DECID 𝑗 ∈ 𝐴 ↔ DECID 𝑘 ∈ 𝐴)) | 
| 34 |   | simprl2 1045 | 
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) | 
| 35 | 34 | ad2antlr 489 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) ∧ 𝑘 ∈ (ℤ≥‘𝑚)) → ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) | 
| 36 |   | simpr 110 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) ∧ 𝑘 ∈ (ℤ≥‘𝑚)) → 𝑘 ∈ (ℤ≥‘𝑚)) | 
| 37 | 33, 35, 36 | rspcdva 2873 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) ∧ 𝑘 ∈ (ℤ≥‘𝑚)) → DECID
𝑘 ∈ 𝐴) | 
| 38 |   | simprr2 1048 | 
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → ∀𝑗 ∈ (ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴) | 
| 39 | 38 | ad2antlr 489 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) ∧ 𝑘 ∈ (ℤ≥‘𝑤)) → ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴) | 
| 40 |   | simpr 110 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) ∧ 𝑘 ∈ (ℤ≥‘𝑤)) → 𝑘 ∈ (ℤ≥‘𝑤)) | 
| 41 | 33, 39, 40 | rspcdva 2873 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) ∧ 𝑘 ∈ (ℤ≥‘𝑤)) → DECID
𝑘 ∈ 𝐴) | 
| 42 | 23, 25, 26, 27, 29, 31, 37, 41 | prodrbdc 11739 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → (seq𝑚( · , 𝐹) ⇝ 𝑥 ↔ seq𝑤( · , 𝐹) ⇝ 𝑥)) | 
| 43 | 22, 42 | mpbid 147 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → seq𝑤( · , 𝐹) ⇝ 𝑥) | 
| 44 |   | simprr3 1049 | 
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → seq𝑤( · , 𝐹) ⇝ 𝑧) | 
| 45 | 44 | adantl 277 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → seq𝑤( · , 𝐹) ⇝ 𝑧) | 
| 46 |   | climuni 11458 | 
. . . . . . . . . . 11
⊢
((seq𝑤( · ,
𝐹) ⇝ 𝑥 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧) → 𝑥 = 𝑧) | 
| 47 | 43, 45, 46 | syl2anc 411 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)))) → 𝑥 = 𝑧) | 
| 48 | 47 | expcom 116 | 
. . . . . . . . 9
⊢ (((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧))) → (𝜑 → 𝑥 = 𝑧)) | 
| 49 | 48 | ex 115 | 
. . . . . . . 8
⊢ ((𝑚 ∈ ℤ ∧ 𝑤 ∈ ℤ) → (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)) → (𝜑 → 𝑥 = 𝑧))) | 
| 50 | 49 | rexlimivv 2620 | 
. . . . . . 7
⊢
(∃𝑚 ∈
ℤ ∃𝑤 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑧)) → (𝜑 → 𝑥 = 𝑧)) | 
| 51 | 20, 50 | sylbi 121 | 
. . . . . 6
⊢
((∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) → (𝜑 → 𝑥 = 𝑧)) | 
| 52 | 5, 10, 51 | syl2an 289 | 
. . . . 5
⊢
((∃𝑚 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∧ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧))) → (𝜑 → 𝑥 = 𝑧)) | 
| 53 |   | prodmodc.3 | 
. . . . . . . . . 10
⊢ 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 1)) | 
| 54 | 23, 24, 53 | prodmodclem2 11742 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) → 𝑧 = 𝑥)) | 
| 55 |   | equcomi 1718 | 
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → 𝑥 = 𝑧) | 
| 56 | 54, 55 | syl6 33 | 
. . . . . . . 8
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧)) | 
| 57 | 56 | expimpd 363 | 
. . . . . . 7
⊢ (𝜑 → ((∃𝑚 ∈ ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧)) | 
| 58 | 57 | com12 30 | 
. . . . . 6
⊢
((∃𝑚 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) → (𝜑 → 𝑥 = 𝑧)) | 
| 59 | 58 | ancoms 268 | 
. . . . 5
⊢
((∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧))) → (𝜑 → 𝑥 = 𝑧)) | 
| 60 | 23, 24, 53 | prodmodclem2 11742 | 
. . . . . . 7
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧)) | 
| 61 | 60 | expimpd 363 | 
. . . . . 6
⊢ (𝜑 → ((∃𝑚 ∈ ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧)) | 
| 62 | 61 | com12 30 | 
. . . . 5
⊢
((∃𝑚 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))) → (𝜑 → 𝑥 = 𝑧)) | 
| 63 |   | reeanv 2667 | 
. . . . . . . 8
⊢
(∃𝑚 ∈
ℕ ∃𝑤 ∈
ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤))) ↔ (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑤 ∈ ℕ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤)))) | 
| 64 |   | exdistrv 1925 | 
. . . . . . . . 9
⊢
(∃𝑓∃𝑔((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤))) ↔ (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤)))) | 
| 65 | 64 | 2rexbii 2506 | 
. . . . . . . 8
⊢
(∃𝑚 ∈
ℕ ∃𝑤 ∈
ℕ ∃𝑓∃𝑔((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤))) ↔ ∃𝑚 ∈ ℕ ∃𝑤 ∈ ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤)))) | 
| 66 |   | oveq2 5930 | 
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑤 → (1...𝑚) = (1...𝑤)) | 
| 67 | 66 | f1oeq2d 5500 | 
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑤 → (𝑓:(1...𝑚)–1-1-onto→𝐴 ↔ 𝑓:(1...𝑤)–1-1-onto→𝐴)) | 
| 68 |   | fveq2 5558 | 
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑤 → (seq1( · , 𝐺)‘𝑚) = (seq1( · , 𝐺)‘𝑤)) | 
| 69 | 68 | eqeq2d 2208 | 
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑤 → (𝑧 = (seq1( · , 𝐺)‘𝑚) ↔ 𝑧 = (seq1( · , 𝐺)‘𝑤))) | 
| 70 | 67, 69 | anbi12d 473 | 
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑤 → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) ↔ (𝑓:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑤)))) | 
| 71 | 70 | exbidv 1839 | 
. . . . . . . . . . 11
⊢ (𝑚 = 𝑤 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑤)))) | 
| 72 |   | f1oeq1 5492 | 
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (𝑓:(1...𝑤)–1-1-onto→𝐴 ↔ 𝑔:(1...𝑤)–1-1-onto→𝐴)) | 
| 73 |   | fveq1 5557 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = 𝑔 → (𝑓‘𝑗) = (𝑔‘𝑗)) | 
| 74 | 73 | csbeq1d 3091 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = 𝑔 → ⦋(𝑓‘𝑗) / 𝑘⦌𝐵 = ⦋(𝑔‘𝑗) / 𝑘⦌𝐵) | 
| 75 | 74 | ifeq1d 3578 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = 𝑔 → if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 1) = if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)) | 
| 76 | 75 | mpteq2dv 4124 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝑔 → (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 1)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1))) | 
| 77 | 53, 76 | eqtrid 2241 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑔 → 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1))) | 
| 78 | 77 | seqeq3d 10547 | 
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑔 → seq1( · , 𝐺) = seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))) | 
| 79 | 78 | fveq1d 5560 | 
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑔 → (seq1( · , 𝐺)‘𝑤) = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤)) | 
| 80 | 79 | eqeq2d 2208 | 
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (𝑧 = (seq1( · , 𝐺)‘𝑤) ↔ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤))) | 
| 81 | 72, 80 | anbi12d 473 | 
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → ((𝑓:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑤)) ↔ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤)))) | 
| 82 | 81 | cbvexvw 1935 | 
. . . . . . . . . . 11
⊢
(∃𝑓(𝑓:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑤)) ↔ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤))) | 
| 83 | 71, 82 | bitrdi 196 | 
. . . . . . . . . 10
⊢ (𝑚 = 𝑤 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤)))) | 
| 84 | 83 | cbvrexvw 2734 | 
. . . . . . . . 9
⊢
(∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑤 ∈ ℕ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤))) | 
| 85 | 84 | anbi2i 457 | 
. . . . . . . 8
⊢
((∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))) ↔ (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑤 ∈ ℕ ∃𝑔(𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤)))) | 
| 86 | 63, 65, 85 | 3bitr4i 212 | 
. . . . . . 7
⊢
(∃𝑚 ∈
ℕ ∃𝑤 ∈
ℕ ∃𝑓∃𝑔((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤))) ↔ (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) | 
| 87 |   | an4 586 | 
. . . . . . . . . 10
⊢ (((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤))) ↔ ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴) ∧ (𝑥 = (seq1( · , 𝐺)‘𝑚) ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤)))) | 
| 88 | 24 | ad4ant14 514 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | 
| 89 |   | breq1 4036 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑎 → (𝑗 ≤ (♯‘𝐴) ↔ 𝑎 ≤ (♯‘𝐴))) | 
| 90 |   | fveq2 5558 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑎 → (𝑓‘𝑗) = (𝑓‘𝑎)) | 
| 91 | 90 | csbeq1d 3091 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑎 → ⦋(𝑓‘𝑗) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑎) / 𝑘⦌𝐵) | 
| 92 | 89, 91 | ifbieq1d 3583 | 
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑎 → if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 1) = if(𝑎 ≤ (♯‘𝐴), ⦋(𝑓‘𝑎) / 𝑘⦌𝐵, 1)) | 
| 93 | 92 | cbvmptv 4129 | 
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 1)) = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑓‘𝑎) / 𝑘⦌𝐵, 1)) | 
| 94 | 53, 93 | eqtri 2217 | 
. . . . . . . . . . . . 13
⊢ 𝐺 = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑓‘𝑎) / 𝑘⦌𝐵, 1)) | 
| 95 |   | fveq2 5558 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑎 → (𝑔‘𝑗) = (𝑔‘𝑎)) | 
| 96 | 95 | csbeq1d 3091 | 
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑎 → ⦋(𝑔‘𝑗) / 𝑘⦌𝐵 = ⦋(𝑔‘𝑎) / 𝑘⦌𝐵) | 
| 97 | 89, 96 | ifbieq1d 3583 | 
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑎 → if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1) = if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 1)) | 
| 98 | 97 | cbvmptv 4129 | 
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)) = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), ⦋(𝑔‘𝑎) / 𝑘⦌𝐵, 1)) | 
| 99 |   | simplr 528 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴)) → (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) | 
| 100 |   | simprl 529 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴)) → 𝑓:(1...𝑚)–1-1-onto→𝐴) | 
| 101 |   | simprr 531 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴)) → 𝑔:(1...𝑤)–1-1-onto→𝐴) | 
| 102 | 23, 88, 94, 98, 99, 100, 101 | prodmodclem3 11740 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴)) → (seq1( · ,
𝐺)‘𝑚) = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤)) | 
| 103 |   | eqeq12 2209 | 
. . . . . . . . . . . 12
⊢ ((𝑥 = (seq1( · , 𝐺)‘𝑚) ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤)) → (𝑥 = 𝑧 ↔ (seq1( · , 𝐺)‘𝑚) = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤))) | 
| 104 | 102, 103 | syl5ibrcom 157 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴)) → ((𝑥 = (seq1( · , 𝐺)‘𝑚) ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤)) → 𝑥 = 𝑧)) | 
| 105 | 104 | expimpd 363 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑤)–1-1-onto→𝐴) ∧ (𝑥 = (seq1( · , 𝐺)‘𝑚) ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤))) → 𝑥 = 𝑧)) | 
| 106 | 87, 105 | biimtrid 152 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤))) → 𝑥 = 𝑧)) | 
| 107 | 106 | exlimdvv 1912 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (∃𝑓∃𝑔((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤))) → 𝑥 = 𝑧)) | 
| 108 | 107 | rexlimdvva 2622 | 
. . . . . . 7
⊢ (𝜑 → (∃𝑚 ∈ ℕ ∃𝑤 ∈ ℕ ∃𝑓∃𝑔((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑤)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)))‘𝑤))) → 𝑥 = 𝑧)) | 
| 109 | 86, 108 | biimtrrid 153 | 
. . . . . 6
⊢ (𝜑 → ((∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧)) | 
| 110 | 109 | com12 30 | 
. . . . 5
⊢
((∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))) → (𝜑 → 𝑥 = 𝑧)) | 
| 111 | 52, 59, 62, 110 | ccase 966 | 
. . . 4
⊢
(((∃𝑚 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) → (𝜑 → 𝑥 = 𝑧)) | 
| 112 | 111 | com12 30 | 
. . 3
⊢ (𝜑 → (((∃𝑚 ∈ ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) → 𝑥 = 𝑧)) | 
| 113 | 112 | alrimivv 1889 | 
. 2
⊢ (𝜑 → ∀𝑥∀𝑧(((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) → 𝑥 = 𝑧)) | 
| 114 |   | breq2 4037 | 
. . . . . . 7
⊢ (𝑥 = 𝑧 → (seq𝑚( · , 𝐹) ⇝ 𝑥 ↔ seq𝑚( · , 𝐹) ⇝ 𝑧)) | 
| 115 | 114 | anbi2d 464 | 
. . . . . 6
⊢ (𝑥 = 𝑧 → ((∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ↔ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧))) | 
| 116 | 115 | anbi2d 464 | 
. . . . 5
⊢ (𝑥 = 𝑧 → (((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ↔ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)))) | 
| 117 | 116 | rexbidv 2498 | 
. . . 4
⊢ (𝑥 = 𝑧 → (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ↔ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)))) | 
| 118 |   | eqeq1 2203 | 
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑥 = (seq1( · , 𝐺)‘𝑚) ↔ 𝑧 = (seq1( · , 𝐺)‘𝑚))) | 
| 119 | 118 | anbi2d 464 | 
. . . . . 6
⊢ (𝑥 = 𝑧 → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) | 
| 120 | 119 | exbidv 1839 | 
. . . . 5
⊢ (𝑥 = 𝑧 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) | 
| 121 | 120 | rexbidv 2498 | 
. . . 4
⊢ (𝑥 = 𝑧 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) | 
| 122 | 117, 121 | orbi12d 794 | 
. . 3
⊢ (𝑥 = 𝑧 → ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) ↔ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))))) | 
| 123 | 122 | mo4 2106 | 
. 2
⊢
(∃*𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) ↔ ∀𝑥∀𝑧(((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑧)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) → 𝑥 = 𝑧)) | 
| 124 | 113, 123 | sylibr 134 | 
1
⊢ (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)))) |