| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-div | GIF version | ||
| Description: Define division. Theorem divmulap 8702 relates it to multiplication, and divclap 8705 and redivclap 8758 prove its closure laws. (Contributed by NM, 2-Feb-1995.) Use divvalap 8701 instead. (Revised by Mario Carneiro, 1-Apr-2014.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| df-div | ⊢ / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cdiv 8699 | . 2 class / | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cc 7877 | . . 3 class ℂ | |
| 5 | cc0 7879 | . . . . 5 class 0 | |
| 6 | 5 | csn 3622 | . . . 4 class {0} | 
| 7 | 4, 6 | cdif 3154 | . . 3 class (ℂ ∖ {0}) | 
| 8 | 3 | cv 1363 | . . . . . 6 class 𝑦 | 
| 9 | vz | . . . . . . 7 setvar 𝑧 | |
| 10 | 9 | cv 1363 | . . . . . 6 class 𝑧 | 
| 11 | cmul 7884 | . . . . . 6 class · | |
| 12 | 8, 10, 11 | co 5922 | . . . . 5 class (𝑦 · 𝑧) | 
| 13 | 2 | cv 1363 | . . . . 5 class 𝑥 | 
| 14 | 12, 13 | wceq 1364 | . . . 4 wff (𝑦 · 𝑧) = 𝑥 | 
| 15 | 14, 9, 4 | crio 5876 | . . 3 class (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) | 
| 16 | 2, 3, 4, 7, 15 | cmpo 5924 | . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) | 
| 17 | 1, 16 | wceq 1364 | 1 wff / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) | 
| Colors of variables: wff set class | 
| This definition is referenced by: divvalap 8701 divfnzn 9695 | 
| Copyright terms: Public domain | W3C validator |