| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > divvalap | GIF version | ||
| Description: Value of division: the (unique) element 𝑥 such that (𝐵 · 𝑥) = 𝐴. This is meaningful only when 𝐵 is apart from zero. (Contributed by Jim Kingdon, 21-Feb-2020.) | 
| Ref | Expression | 
|---|---|
| divvalap | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) = (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp1 999 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐴 ∈ ℂ) | |
| 2 | simp2 1000 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐵 ∈ ℂ) | |
| 3 | 0cn 8018 | . . . . . 6 ⊢ 0 ∈ ℂ | |
| 4 | apne 8650 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐵 # 0 → 𝐵 ≠ 0)) | |
| 5 | 3, 4 | mpan2 425 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (𝐵 # 0 → 𝐵 ≠ 0)) | 
| 6 | 5 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 # 0 → 𝐵 ≠ 0)) | 
| 7 | 6 | 3impia 1202 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐵 ≠ 0) | 
| 8 | eldifsn 3749 | . . 3 ⊢ (𝐵 ∈ (ℂ ∖ {0}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) | |
| 9 | 2, 7, 8 | sylanbrc 417 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐵 ∈ (ℂ ∖ {0})) | 
| 10 | receuap 8696 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) | |
| 11 | riotacl 5892 | . . 3 ⊢ (∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴 → (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) ∈ ℂ) | |
| 12 | 10, 11 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) ∈ ℂ) | 
| 13 | eqeq2 2206 | . . . 4 ⊢ (𝑧 = 𝐴 → ((𝑦 · 𝑥) = 𝑧 ↔ (𝑦 · 𝑥) = 𝐴)) | |
| 14 | 13 | riotabidv 5879 | . . 3 ⊢ (𝑧 = 𝐴 → (℩𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝑧) = (℩𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝐴)) | 
| 15 | oveq1 5929 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 · 𝑥) = (𝐵 · 𝑥)) | |
| 16 | 15 | eqeq1d 2205 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝑦 · 𝑥) = 𝐴 ↔ (𝐵 · 𝑥) = 𝐴)) | 
| 17 | 16 | riotabidv 5879 | . . 3 ⊢ (𝑦 = 𝐵 → (℩𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝐴) = (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)) | 
| 18 | df-div 8700 | . . 3 ⊢ / = (𝑧 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝑧)) | |
| 19 | 14, 17, 18 | ovmpog 6057 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ (ℂ ∖ {0}) ∧ (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) ∈ ℂ) → (𝐴 / 𝐵) = (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)) | 
| 20 | 1, 9, 12, 19 | syl3anc 1249 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) = (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ∃!wreu 2477 ∖ cdif 3154 {csn 3622 class class class wbr 4033 ℩crio 5876 (class class class)co 5922 ℂcc 7877 0cc0 7879 · cmul 7884 # cap 8608 / cdiv 8699 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 | 
| This theorem is referenced by: divmulap 8702 divclap 8705 | 
| Copyright terms: Public domain | W3C validator |