ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divvalap GIF version

Theorem divvalap 8789
Description: Value of division: the (unique) element 𝑥 such that (𝐵 · 𝑥) = 𝐴. This is meaningful only when 𝐵 is apart from zero. (Contributed by Jim Kingdon, 21-Feb-2020.)
Assertion
Ref Expression
divvalap ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem divvalap
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1002 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐴 ∈ ℂ)
2 simp2 1003 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐵 ∈ ℂ)
3 0cn 8106 . . . . . 6 0 ∈ ℂ
4 apne 8738 . . . . . 6 ((𝐵 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐵 # 0 → 𝐵 ≠ 0))
53, 4mpan2 425 . . . . 5 (𝐵 ∈ ℂ → (𝐵 # 0 → 𝐵 ≠ 0))
65adantl 277 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 # 0 → 𝐵 ≠ 0))
763impia 1205 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐵 ≠ 0)
8 eldifsn 3774 . . 3 (𝐵 ∈ (ℂ ∖ {0}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
92, 7, 8sylanbrc 417 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐵 ∈ (ℂ ∖ {0}))
10 receuap 8784 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
11 riotacl 5943 . . 3 (∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴 → (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) ∈ ℂ)
1210, 11syl 14 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) ∈ ℂ)
13 eqeq2 2219 . . . 4 (𝑧 = 𝐴 → ((𝑦 · 𝑥) = 𝑧 ↔ (𝑦 · 𝑥) = 𝐴))
1413riotabidv 5929 . . 3 (𝑧 = 𝐴 → (𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝑧) = (𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝐴))
15 oveq1 5981 . . . . 5 (𝑦 = 𝐵 → (𝑦 · 𝑥) = (𝐵 · 𝑥))
1615eqeq1d 2218 . . . 4 (𝑦 = 𝐵 → ((𝑦 · 𝑥) = 𝐴 ↔ (𝐵 · 𝑥) = 𝐴))
1716riotabidv 5929 . . 3 (𝑦 = 𝐵 → (𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝐴) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
18 df-div 8788 . . 3 / = (𝑧 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝑧))
1914, 17, 18ovmpog 6110 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ (ℂ ∖ {0}) ∧ (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) ∈ ℂ) → (𝐴 / 𝐵) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
201, 9, 12, 19syl3anc 1252 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 983   = wceq 1375  wcel 2180  wne 2380  ∃!wreu 2490  cdif 3174  {csn 3646   class class class wbr 4062  crio 5926  (class class class)co 5974  cc 7965  0cc0 7967   · cmul 7972   # cap 8696   / cdiv 8787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-iota 5254  df-fun 5296  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788
This theorem is referenced by:  divmulap  8790  divclap  8793
  Copyright terms: Public domain W3C validator