ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divvalap GIF version

Theorem divvalap 8829
Description: Value of division: the (unique) element 𝑥 such that (𝐵 · 𝑥) = 𝐴. This is meaningful only when 𝐵 is apart from zero. (Contributed by Jim Kingdon, 21-Feb-2020.)
Assertion
Ref Expression
divvalap ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem divvalap
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1021 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐴 ∈ ℂ)
2 simp2 1022 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐵 ∈ ℂ)
3 0cn 8146 . . . . . 6 0 ∈ ℂ
4 apne 8778 . . . . . 6 ((𝐵 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐵 # 0 → 𝐵 ≠ 0))
53, 4mpan2 425 . . . . 5 (𝐵 ∈ ℂ → (𝐵 # 0 → 𝐵 ≠ 0))
65adantl 277 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 # 0 → 𝐵 ≠ 0))
763impia 1224 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐵 ≠ 0)
8 eldifsn 3795 . . 3 (𝐵 ∈ (ℂ ∖ {0}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
92, 7, 8sylanbrc 417 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐵 ∈ (ℂ ∖ {0}))
10 receuap 8824 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
11 riotacl 5976 . . 3 (∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴 → (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) ∈ ℂ)
1210, 11syl 14 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) ∈ ℂ)
13 eqeq2 2239 . . . 4 (𝑧 = 𝐴 → ((𝑦 · 𝑥) = 𝑧 ↔ (𝑦 · 𝑥) = 𝐴))
1413riotabidv 5962 . . 3 (𝑧 = 𝐴 → (𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝑧) = (𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝐴))
15 oveq1 6014 . . . . 5 (𝑦 = 𝐵 → (𝑦 · 𝑥) = (𝐵 · 𝑥))
1615eqeq1d 2238 . . . 4 (𝑦 = 𝐵 → ((𝑦 · 𝑥) = 𝐴 ↔ (𝐵 · 𝑥) = 𝐴))
1716riotabidv 5962 . . 3 (𝑦 = 𝐵 → (𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝐴) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
18 df-div 8828 . . 3 / = (𝑧 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝑧))
1914, 17, 18ovmpog 6145 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ (ℂ ∖ {0}) ∧ (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) ∈ ℂ) → (𝐴 / 𝐵) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
201, 9, 12, 19syl3anc 1271 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 1002   = wceq 1395  wcel 2200  wne 2400  ∃!wreu 2510  cdif 3194  {csn 3666   class class class wbr 4083  crio 5959  (class class class)co 6007  cc 8005  0cc0 8007   · cmul 8012   # cap 8736   / cdiv 8827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828
This theorem is referenced by:  divmulap  8830  divclap  8833
  Copyright terms: Public domain W3C validator