| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divvalap | GIF version | ||
| Description: Value of division: the (unique) element 𝑥 such that (𝐵 · 𝑥) = 𝐴. This is meaningful only when 𝐵 is apart from zero. (Contributed by Jim Kingdon, 21-Feb-2020.) |
| Ref | Expression |
|---|---|
| divvalap | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) = (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1002 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐴 ∈ ℂ) | |
| 2 | simp2 1003 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐵 ∈ ℂ) | |
| 3 | 0cn 8106 | . . . . . 6 ⊢ 0 ∈ ℂ | |
| 4 | apne 8738 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐵 # 0 → 𝐵 ≠ 0)) | |
| 5 | 3, 4 | mpan2 425 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (𝐵 # 0 → 𝐵 ≠ 0)) |
| 6 | 5 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 # 0 → 𝐵 ≠ 0)) |
| 7 | 6 | 3impia 1205 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐵 ≠ 0) |
| 8 | eldifsn 3774 | . . 3 ⊢ (𝐵 ∈ (ℂ ∖ {0}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) | |
| 9 | 2, 7, 8 | sylanbrc 417 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐵 ∈ (ℂ ∖ {0})) |
| 10 | receuap 8784 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) | |
| 11 | riotacl 5943 | . . 3 ⊢ (∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴 → (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) ∈ ℂ) | |
| 12 | 10, 11 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) ∈ ℂ) |
| 13 | eqeq2 2219 | . . . 4 ⊢ (𝑧 = 𝐴 → ((𝑦 · 𝑥) = 𝑧 ↔ (𝑦 · 𝑥) = 𝐴)) | |
| 14 | 13 | riotabidv 5929 | . . 3 ⊢ (𝑧 = 𝐴 → (℩𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝑧) = (℩𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝐴)) |
| 15 | oveq1 5981 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 · 𝑥) = (𝐵 · 𝑥)) | |
| 16 | 15 | eqeq1d 2218 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝑦 · 𝑥) = 𝐴 ↔ (𝐵 · 𝑥) = 𝐴)) |
| 17 | 16 | riotabidv 5929 | . . 3 ⊢ (𝑦 = 𝐵 → (℩𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝐴) = (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)) |
| 18 | df-div 8788 | . . 3 ⊢ / = (𝑧 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑥 ∈ ℂ (𝑦 · 𝑥) = 𝑧)) | |
| 19 | 14, 17, 18 | ovmpog 6110 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ (ℂ ∖ {0}) ∧ (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) ∈ ℂ) → (𝐴 / 𝐵) = (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)) |
| 20 | 1, 9, 12, 19 | syl3anc 1252 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) = (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 ≠ wne 2380 ∃!wreu 2490 ∖ cdif 3174 {csn 3646 class class class wbr 4062 ℩crio 5926 (class class class)co 5974 ℂcc 7965 0cc0 7967 · cmul 7972 # cap 8696 / cdiv 8787 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-id 4361 df-po 4364 df-iso 4365 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-iota 5254 df-fun 5296 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 |
| This theorem is referenced by: divmulap 8790 divclap 8793 |
| Copyright terms: Public domain | W3C validator |