![]() |
Intuitionistic Logic Explorer Theorem List (p. 87 of 157) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | recexgt0 8601* | Existence of reciprocal of positive real number. (Contributed by Jim Kingdon, 6-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1)) | ||
Syntax | cap 8602 | Class of complex apartness relation. |
class # | ||
Definition | df-ap 8603* |
Define complex apartness. Definition 6.1 of [Geuvers], p. 17.
Two numbers are considered apart if it is possible to separate them. One common usage is that we can divide by a number if it is apart from zero (see for example recclap 8700 which says that a number apart from zero has a reciprocal). The defining characteristics of an apartness are irreflexivity (apirr 8626), symmetry (apsym 8627), and cotransitivity (apcotr 8628). Apartness implies negated equality, as seen at apne 8644, and the converse would also follow if we assumed excluded middle. In addition, apartness of complex numbers is tight, which means that two numbers which are not apart are equal (apti 8643). (Contributed by Jim Kingdon, 26-Jan-2020.) |
⊢ # = {〈𝑥, 𝑦〉 ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢))} | ||
Theorem | ixi 8604 | i times itself is minus 1. (Contributed by NM, 6-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ (i · i) = -1 | ||
Theorem | inelr 8605 | The imaginary unit i is not a real number. (Contributed by NM, 6-May-1999.) |
⊢ ¬ i ∈ ℝ | ||
Theorem | rimul 8606 | A real number times the imaginary unit is real only if the number is 0. (Contributed by NM, 28-May-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → 𝐴 = 0) | ||
Theorem | rereim 8607 | Decomposition of a real number into real part (itself) and imaginary part (zero). (Contributed by Jim Kingdon, 30-Jan-2020.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → (𝐵 = 𝐴 ∧ 𝐶 = 0)) | ||
Theorem | apreap 8608 | Complex apartness and real apartness agree on the real numbers. (Contributed by Jim Kingdon, 31-Jan-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ 𝐴 #ℝ 𝐵)) | ||
Theorem | reaplt 8609 | Real apartness in terms of less than. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 1-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | ||
Theorem | reapltxor 8610 | Real apartness in terms of less than (exclusive-or version). (Contributed by Jim Kingdon, 23-Mar-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵 ⊻ 𝐵 < 𝐴))) | ||
Theorem | 1ap0 8611 | One is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.) |
⊢ 1 # 0 | ||
Theorem | ltmul1a 8612 | Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 15-May-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ 𝐴 < 𝐵) → (𝐴 · 𝐶) < (𝐵 · 𝐶)) | ||
Theorem | ltmul1 8613 | Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶))) | ||
Theorem | lemul1 8614 | Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 21-Feb-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ 𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))) | ||
Theorem | reapmul1lem 8615 | Lemma for reapmul1 8616. (Contributed by Jim Kingdon, 8-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶))) | ||
Theorem | reapmul1 8616 | Multiplication of both sides of real apartness by a real number apart from zero. Special case of apmul1 8809. (Contributed by Jim Kingdon, 8-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶))) | ||
Theorem | reapadd1 8617 | Real addition respects apartness. (Contributed by Jim Kingdon, 13-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶))) | ||
Theorem | reapneg 8618 | Real negation respects apartness. (Contributed by Jim Kingdon, 13-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ -𝐴 # -𝐵)) | ||
Theorem | reapcotr 8619 | Real apartness is cotransitive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 → (𝐴 # 𝐶 ∨ 𝐵 # 𝐶))) | ||
Theorem | remulext1 8620 | Left extensionality for multiplication. (Contributed by Jim Kingdon, 19-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) # (𝐵 · 𝐶) → 𝐴 # 𝐵)) | ||
Theorem | remulext2 8621 | Right extensionality for real multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 · 𝐴) # (𝐶 · 𝐵) → 𝐴 # 𝐵)) | ||
Theorem | apsqgt0 8622 | The square of a real number apart from zero is positive. (Contributed by Jim Kingdon, 7-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → 0 < (𝐴 · 𝐴)) | ||
Theorem | cru 8623 | The representation of complex numbers in terms of real and imaginary parts is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Theorem | apreim 8624 | Complex apartness in terms of real and imaginary parts. (Contributed by Jim Kingdon, 12-Feb-2020.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) # (𝐶 + (i · 𝐷)) ↔ (𝐴 # 𝐶 ∨ 𝐵 # 𝐷))) | ||
Theorem | mulreim 8625 | Complex multiplication in terms of real and imaginary parts. (Contributed by Jim Kingdon, 23-Feb-2020.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) = (((𝐴 · 𝐶) + -(𝐵 · 𝐷)) + (i · ((𝐶 · 𝐵) + (𝐷 · 𝐴))))) | ||
Theorem | apirr 8626 | Apartness is irreflexive. (Contributed by Jim Kingdon, 16-Feb-2020.) |
⊢ (𝐴 ∈ ℂ → ¬ 𝐴 # 𝐴) | ||
Theorem | apsym 8627 | Apartness is symmetric. This theorem for real numbers is part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ 𝐵 # 𝐴)) | ||
Theorem | apcotr 8628 | Apartness is cotransitive. (Contributed by Jim Kingdon, 16-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 → (𝐴 # 𝐶 ∨ 𝐵 # 𝐶))) | ||
Theorem | apadd1 8629 | Addition respects apartness. Analogue of addcan 8201 for apartness. (Contributed by Jim Kingdon, 13-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶))) | ||
Theorem | apadd2 8630 | Addition respects apartness. (Contributed by Jim Kingdon, 16-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 ↔ (𝐶 + 𝐴) # (𝐶 + 𝐵))) | ||
Theorem | addext 8631 | Strong extensionality for addition. Given excluded middle, apartness would be equivalent to negated equality and this would follow readily (for all operations) from oveq12 5928. For us, it is proved a different way. (Contributed by Jim Kingdon, 15-Feb-2020.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) # (𝐶 + 𝐷) → (𝐴 # 𝐶 ∨ 𝐵 # 𝐷))) | ||
Theorem | apneg 8632 | Negation respects apartness. (Contributed by Jim Kingdon, 14-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ -𝐴 # -𝐵)) | ||
Theorem | mulext1 8633 | Left extensionality for complex multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐶) # (𝐵 · 𝐶) → 𝐴 # 𝐵)) | ||
Theorem | mulext2 8634 | Right extensionality for complex multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐶 · 𝐴) # (𝐶 · 𝐵) → 𝐴 # 𝐵)) | ||
Theorem | mulext 8635 | Strong extensionality for multiplication. Given excluded middle, apartness would be equivalent to negated equality and this would follow readily (for all operations) from oveq12 5928. For us, it is proved a different way. (Contributed by Jim Kingdon, 23-Feb-2020.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) # (𝐶 · 𝐷) → (𝐴 # 𝐶 ∨ 𝐵 # 𝐷))) | ||
Theorem | mulap0r 8636 | A product apart from zero. Lemma 2.13 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 24-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∧ 𝐵 # 0)) | ||
Theorem | msqge0 8637 | A square is nonnegative. Lemma 2.35 of [Geuvers], p. 9. (Contributed by NM, 23-May-2007.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴)) | ||
Theorem | msqge0i 8638 | A square is nonnegative. (Contributed by NM, 14-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ 0 ≤ (𝐴 · 𝐴) | ||
Theorem | msqge0d 8639 | A square is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 0 ≤ (𝐴 · 𝐴)) | ||
Theorem | mulge0 8640 | The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵)) | ||
Theorem | mulge0i 8641 | The product of two nonnegative numbers is nonnegative. (Contributed by NM, 30-Jul-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → 0 ≤ (𝐴 · 𝐵)) | ||
Theorem | mulge0d 8642 | The product of two nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → 0 ≤ (𝐴 · 𝐵)) | ||
Theorem | apti 8643 | Complex apartness is tight. (Contributed by Jim Kingdon, 21-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵)) | ||
Theorem | apne 8644 | Apartness implies negated equality. We cannot in general prove the converse (as shown at neapmkv 15628), which is the whole point of having separate notations for apartness and negated equality. (Contributed by Jim Kingdon, 21-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 → 𝐴 ≠ 𝐵)) | ||
Theorem | apcon4bid 8645 | Contrapositive law deduction for apartness. (Contributed by Jim Kingdon, 31-Jul-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → (𝐴 # 𝐵 ↔ 𝐶 # 𝐷)) ⇒ ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) | ||
Theorem | leltap 8646 | ≤ implies 'less than' is 'apart'. (Contributed by Jim Kingdon, 13-Aug-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐴 < 𝐵 ↔ 𝐵 # 𝐴)) | ||
Theorem | gt0ap0 8647 | Positive implies apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 # 0) | ||
Theorem | gt0ap0i 8648 | Positive means apart from zero (useful for ordering theorems involving division). (Contributed by Jim Kingdon, 27-Feb-2020.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 < 𝐴 → 𝐴 # 0) | ||
Theorem | gt0ap0ii 8649 | Positive implies apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.) |
⊢ 𝐴 ∈ ℝ & ⊢ 0 < 𝐴 ⇒ ⊢ 𝐴 # 0 | ||
Theorem | gt0ap0d 8650 | Positive implies apart from zero. Because of the way we define #, 𝐴 must be an element of ℝ, not just ℝ*. (Contributed by Jim Kingdon, 27-Feb-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) ⇒ ⊢ (𝜑 → 𝐴 # 0) | ||
Theorem | negap0 8651 | A number is apart from zero iff its negative is apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.) |
⊢ (𝐴 ∈ ℂ → (𝐴 # 0 ↔ -𝐴 # 0)) | ||
Theorem | negap0d 8652 | The negative of a number apart from zero is apart from zero. (Contributed by Jim Kingdon, 25-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → -𝐴 # 0) | ||
Theorem | ltleap 8653 | Less than in terms of non-strict order and apartness. (Contributed by Jim Kingdon, 28-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐴 # 𝐵))) | ||
Theorem | ltap 8654 | 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 # 𝐴) | ||
Theorem | gtapii 8655 | 'Greater than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐴 < 𝐵 ⇒ ⊢ 𝐵 # 𝐴 | ||
Theorem | ltapii 8656 | 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐴 < 𝐵 ⇒ ⊢ 𝐴 # 𝐵 | ||
Theorem | ltapi 8657 | 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 < 𝐵 → 𝐵 # 𝐴) | ||
Theorem | gtapd 8658 | 'Greater than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐵 # 𝐴) | ||
Theorem | ltapd 8659 | 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 # 𝐵) | ||
Theorem | leltapd 8660 | ≤ implies 'less than' is 'apart'. (Contributed by Jim Kingdon, 13-Aug-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 𝐵 # 𝐴)) | ||
Theorem | ap0gt0 8661 | A nonnegative number is apart from zero if and only if it is positive. (Contributed by Jim Kingdon, 11-Aug-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 # 0 ↔ 0 < 𝐴)) | ||
Theorem | ap0gt0d 8662 | A nonzero nonnegative number is positive. (Contributed by Jim Kingdon, 11-Aug-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → 0 < 𝐴) | ||
Theorem | apsub1 8663 | Subtraction respects apartness. Analogue of subcan2 8246 for apartness. (Contributed by Jim Kingdon, 6-Jan-2022.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 ↔ (𝐴 − 𝐶) # (𝐵 − 𝐶))) | ||
Theorem | subap0 8664 | Two numbers being apart is equivalent to their difference being apart from zero. (Contributed by Jim Kingdon, 25-Dec-2022.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) # 0 ↔ 𝐴 # 𝐵)) | ||
Theorem | subap0d 8665 | Two numbers apart from each other have difference apart from zero. (Contributed by Jim Kingdon, 12-Aug-2021.) (Proof shortened by BJ, 15-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 𝐵) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) # 0) | ||
Theorem | cnstab 8666 | Equality of complex numbers is stable. Stability here means ¬ ¬ 𝐴 = 𝐵 → 𝐴 = 𝐵 as defined at df-stab 832. This theorem for real numbers is Proposition 5.2 of [BauerHanson], p. 27. (Contributed by Jim Kingdon, 1-Aug-2023.) (Proof shortened by BJ, 15-Aug-2024.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → STAB 𝐴 = 𝐵) | ||
Theorem | aprcl 8667 | Reverse closure for apartness. (Contributed by Jim Kingdon, 19-Dec-2023.) |
⊢ (𝐴 # 𝐵 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) | ||
Theorem | apsscn 8668* | The points apart from a given point are complex numbers. (Contributed by Jim Kingdon, 19-Dec-2023.) |
⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 # 𝐵} ⊆ ℂ | ||
Theorem | lt0ap0 8669 | A number which is less than zero is apart from zero. (Contributed by Jim Kingdon, 25-Feb-2024.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 # 0) | ||
Theorem | lt0ap0d 8670 | A real number less than zero is apart from zero. Deduction form. (Contributed by Jim Kingdon, 24-Feb-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 0) ⇒ ⊢ (𝜑 → 𝐴 # 0) | ||
Theorem | aptap 8671 | Complex apartness (as defined at df-ap 8603) is a tight apartness (as defined at df-tap 7312). (Contributed by Jim Kingdon, 16-Feb-2025.) |
⊢ # TAp ℂ | ||
Theorem | recextlem1 8672 | Lemma for recexap 8674. (Contributed by Eric Schmidt, 23-May-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) = ((𝐴 · 𝐴) + (𝐵 · 𝐵))) | ||
Theorem | recexaplem2 8673 | Lemma for recexap 8674. (Contributed by Jim Kingdon, 20-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → ((𝐴 · 𝐴) + (𝐵 · 𝐵)) # 0) | ||
Theorem | recexap 8674* | Existence of reciprocal of nonzero complex number. (Contributed by Jim Kingdon, 20-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1) | ||
Theorem | mulap0 8675 | The product of two numbers apart from zero is apart from zero. Lemma 2.15 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 22-Feb-2020.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (𝐴 · 𝐵) # 0) | ||
Theorem | mulap0b 8676 | The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 # 0 ∧ 𝐵 # 0) ↔ (𝐴 · 𝐵) # 0)) | ||
Theorem | mulap0i 8677 | The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 23-Feb-2020.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐴 # 0 & ⊢ 𝐵 # 0 ⇒ ⊢ (𝐴 · 𝐵) # 0 | ||
Theorem | mulap0bd 8678 | The product of two numbers apart from zero is apart from zero. Exercise 11.11 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 24-Feb-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 # 0 ∧ 𝐵 # 0) ↔ (𝐴 · 𝐵) # 0)) | ||
Theorem | mulap0d 8679 | The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 23-Feb-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) # 0) | ||
Theorem | mulap0bad 8680 | A factor of a complex number apart from zero is apart from zero. Partial converse of mulap0d 8679 and consequence of mulap0bd 8678. (Contributed by Jim Kingdon, 24-Feb-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 · 𝐵) # 0) ⇒ ⊢ (𝜑 → 𝐴 # 0) | ||
Theorem | mulap0bbd 8681 | A factor of a complex number apart from zero is apart from zero. Partial converse of mulap0d 8679 and consequence of mulap0bd 8678. (Contributed by Jim Kingdon, 24-Feb-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 · 𝐵) # 0) ⇒ ⊢ (𝜑 → 𝐵 # 0) | ||
Theorem | mulcanapd 8682 | Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | mulcanap2d 8683 | Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | mulcanapad 8684 | Cancellation of a nonzero factor on the left in an equation. One-way deduction form of mulcanapd 8682. (Contributed by Jim Kingdon, 21-Feb-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) & ⊢ (𝜑 → (𝐶 · 𝐴) = (𝐶 · 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | mulcanap2ad 8685 | Cancellation of a nonzero factor on the right in an equation. One-way deduction form of mulcanap2d 8683. (Contributed by Jim Kingdon, 21-Feb-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) & ⊢ (𝜑 → (𝐴 · 𝐶) = (𝐵 · 𝐶)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | mulcanap 8686 | Cancellation law for multiplication (full theorem form). (Contributed by Jim Kingdon, 21-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | mulcanap2 8687 | Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | mulcanapi 8688 | Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐶 # 0 ⇒ ⊢ ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵) | ||
Theorem | muleqadd 8689 | Property of numbers whose product equals their sum. Equation 5 of [Kreyszig] p. 12. (Contributed by NM, 13-Nov-2006.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = (𝐴 + 𝐵) ↔ ((𝐴 − 1) · (𝐵 − 1)) = 1)) | ||
Theorem | receuap 8690* | Existential uniqueness of reciprocals. (Contributed by Jim Kingdon, 21-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) | ||
Theorem | mul0eqap 8691 | If two numbers are apart from each other and their product is zero, one of them must be zero. (Contributed by Jim Kingdon, 31-Jul-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 𝐵) & ⊢ (𝜑 → (𝐴 · 𝐵) = 0) ⇒ ⊢ (𝜑 → (𝐴 = 0 ∨ 𝐵 = 0)) | ||
Theorem | recapb 8692* | A complex number has a multiplicative inverse if and only if it is apart from zero. Theorem 11.2.4 of [HoTT], p. (varies), generalized from real to complex numbers. (Contributed by Jim Kingdon, 18-Jan-2025.) |
⊢ (𝐴 ∈ ℂ → (𝐴 # 0 ↔ ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1)) | ||
Syntax | cdiv 8693 | Extend class notation to include division. |
class / | ||
Definition | df-div 8694* | Define division. Theorem divmulap 8696 relates it to multiplication, and divclap 8699 and redivclap 8752 prove its closure laws. (Contributed by NM, 2-Feb-1995.) Use divvalap 8695 instead. (Revised by Mario Carneiro, 1-Apr-2014.) (New usage is discouraged.) |
⊢ / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) | ||
Theorem | divvalap 8695* | Value of division: the (unique) element 𝑥 such that (𝐵 · 𝑥) = 𝐴. This is meaningful only when 𝐵 is apart from zero. (Contributed by Jim Kingdon, 21-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) = (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)) | ||
Theorem | divmulap 8696 | Relationship between division and multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ (𝐶 · 𝐵) = 𝐴)) | ||
Theorem | divmulap2 8697 | Relationship between division and multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ 𝐴 = (𝐶 · 𝐵))) | ||
Theorem | divmulap3 8698 | Relationship between division and multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ 𝐴 = (𝐵 · 𝐶))) | ||
Theorem | divclap 8699 | Closure law for division. (Contributed by Jim Kingdon, 22-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) ∈ ℂ) | ||
Theorem | recclap 8700 | Closure law for reciprocal. (Contributed by Jim Kingdon, 22-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / 𝐴) ∈ ℂ) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |