HomeHome Intuitionistic Logic Explorer
Theorem List (p. 87 of 135)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8601-8700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdivcanap5d 8601 Cancellation of common factor in a ratio. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐶 · 𝐴) / (𝐶 · 𝐵)) = (𝐴 / 𝐵))
 
Theoremdivcanap5rd 8602 Cancellation of common factor in a ratio. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 · 𝐶) / (𝐵 · 𝐶)) = (𝐴 / 𝐵))
 
Theoremdivcanap7d 8603 Cancel equal divisors in a division. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 / 𝐶) / (𝐵 / 𝐶)) = (𝐴 / 𝐵))
 
Theoremdmdcanapd 8604 Cancellation law for division and multiplication. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐵 / 𝐶) · (𝐴 / 𝐵)) = (𝐴 / 𝐶))
 
Theoremdmdcanap2d 8605 Cancellation law for division and multiplication. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 / 𝐵) · (𝐵 / 𝐶)) = (𝐴 / 𝐶))
 
Theoremdivdivap1d 8606 Division into a fraction. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶)))
 
Theoremdivdivap2d 8607 Division by a fraction. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐶 # 0)       (𝜑 → (𝐴 / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / 𝐵))
 
Theoremdivmulap2d 8608 Relationship between division and multiplication. (Contributed by Jim Kingdon, 2-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 / 𝐶) = 𝐵𝐴 = (𝐶 · 𝐵)))
 
Theoremdivmulap3d 8609 Relationship between division and multiplication. (Contributed by Jim Kingdon, 2-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 / 𝐶) = 𝐵𝐴 = (𝐵 · 𝐶)))
 
Theoremdivassapd 8610 An associative law for division. (Contributed by Jim Kingdon, 2-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶)))
 
Theoremdiv12apd 8611 A commutative/associative law for division. (Contributed by Jim Kingdon, 2-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)       (𝜑 → (𝐴 · (𝐵 / 𝐶)) = (𝐵 · (𝐴 / 𝐶)))
 
Theoremdiv23apd 8612 A commutative/associative law for division. (Contributed by Jim Kingdon, 2-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵))
 
Theoremdivdirapd 8613 Distribution of division over addition. (Contributed by Jim Kingdon, 2-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶)))
 
Theoremdivsubdirapd 8614 Distribution of division over subtraction. (Contributed by Jim Kingdon, 2-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴𝐵) / 𝐶) = ((𝐴 / 𝐶) − (𝐵 / 𝐶)))
 
Theoremdiv11apd 8615 One-to-one relationship for division. (Contributed by Jim Kingdon, 2-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)    &   (𝜑 → (𝐴 / 𝐶) = (𝐵 / 𝐶))       (𝜑𝐴 = 𝐵)
 
Theoremdivmuldivapd 8616 Multiplication of two ratios. (Contributed by Jim Kingdon, 30-Jul-2021.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐷 # 0)       (𝜑 → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)))
 
Theoremrerecclapd 8617 Closure law for reciprocal. (Contributed by Jim Kingdon, 29-Feb-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 # 0)       (𝜑 → (1 / 𝐴) ∈ ℝ)
 
Theoremredivclapd 8618 Closure law for division of reals. (Contributed by Jim Kingdon, 29-Feb-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐵 # 0)       (𝜑 → (𝐴 / 𝐵) ∈ ℝ)
 
Theoremdiveqap1bd 8619 If two complex numbers are equal, their quotient is one. One-way deduction form of diveqap1 8489. Converse of diveqap1d 8582. (Contributed by David Moews, 28-Feb-2017.) (Revised by Jim Kingdon, 2-Aug-2023.)
(𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (𝐴 / 𝐵) = 1)
 
Theoremdiv2subap 8620 Swap the order of subtraction in a division. (Contributed by Scott Fenton, 24-Jun-2013.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷)) → ((𝐴𝐵) / (𝐶𝐷)) = ((𝐵𝐴) / (𝐷𝐶)))
 
Theoremdiv2subapd 8621 Swap subtrahend and minuend inside the numerator and denominator of a fraction. Deduction form of div2subap 8620. (Contributed by David Moews, 28-Feb-2017.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)    &   (𝜑𝐶 # 𝐷)       (𝜑 → ((𝐴𝐵) / (𝐶𝐷)) = ((𝐵𝐴) / (𝐷𝐶)))
 
Theoremsubrecap 8622 Subtraction of reciprocals. (Contributed by Scott Fenton, 9-Jul-2015.)
(((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((1 / 𝐴) − (1 / 𝐵)) = ((𝐵𝐴) / (𝐴 · 𝐵)))
 
Theoremsubrecapi 8623 Subtraction of reciprocals. (Contributed by Scott Fenton, 9-Jan-2017.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐴 # 0    &   𝐵 # 0       ((1 / 𝐴) − (1 / 𝐵)) = ((𝐵𝐴) / (𝐴 · 𝐵))
 
Theoremsubrecapd 8624 Subtraction of reciprocals. (Contributed by Scott Fenton, 9-Jan-2017.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝐵 # 0)       (𝜑 → ((1 / 𝐴) − (1 / 𝐵)) = ((𝐵𝐴) / (𝐴 · 𝐵)))
 
Theoremmvllmulapd 8625 Move LHS left multiplication to RHS. (Contributed by Jim Kingdon, 10-Jun-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑 → (𝐴 · 𝐵) = 𝐶)       (𝜑𝐵 = (𝐶 / 𝐴))
 
4.3.9  Ordering on reals (cont.)
 
Theoremltp1 8626 A number is less than itself plus 1. (Contributed by NM, 20-Aug-2001.)
(𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))
 
Theoremlep1 8627 A number is less than or equal to itself plus 1. (Contributed by NM, 5-Jan-2006.)
(𝐴 ∈ ℝ → 𝐴 ≤ (𝐴 + 1))
 
Theoremltm1 8628 A number minus 1 is less than itself. (Contributed by NM, 9-Apr-2006.)
(𝐴 ∈ ℝ → (𝐴 − 1) < 𝐴)
 
Theoremlem1 8629 A number minus 1 is less than or equal to itself. (Contributed by Mario Carneiro, 2-Oct-2015.)
(𝐴 ∈ ℝ → (𝐴 − 1) ≤ 𝐴)
 
Theoremletrp1 8630 A transitive property of 'less than or equal' and plus 1. (Contributed by NM, 5-Aug-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴 ≤ (𝐵 + 1))
 
Theoremp1le 8631 A transitive property of plus 1 and 'less than or equal'. (Contributed by NM, 16-Aug-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + 1) ≤ 𝐵) → 𝐴𝐵)
 
Theoremrecgt0 8632 The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 25-Aug-1999.) (Revised by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴))
 
Theoremprodgt0gt0 8633 Infer that a multiplicand is positive from a positive multiplier and positive product. See prodgt0 8634 for the same theorem with 0 < 𝐴 replaced by the weaker condition 0 ≤ 𝐴. (Contributed by Jim Kingdon, 29-Feb-2020.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 < 𝐵)
 
Theoremprodgt0 8634 Infer that a multiplicand is positive from a nonnegative multiplier and positive product. (Contributed by NM, 24-Apr-2005.) (Revised by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 < 𝐵)
 
Theoremprodgt02 8635 Infer that a multiplier is positive from a nonnegative multiplicand and positive product. (Contributed by NM, 24-Apr-2005.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐵 ∧ 0 < (𝐴 · 𝐵))) → 0 < 𝐴)
 
Theoremprodge0 8636 Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ (𝐴 · 𝐵))) → 0 ≤ 𝐵)
 
Theoremprodge02 8637 Infer that a multiplier is nonnegative from a positive multiplicand and nonnegative product. (Contributed by NM, 2-Jul-2005.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐵 ∧ 0 ≤ (𝐴 · 𝐵))) → 0 ≤ 𝐴)
 
Theoremltmul2 8638 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 13-Feb-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐶 · 𝐴) < (𝐶 · 𝐵)))
 
Theoremlemul2 8639 Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 16-Mar-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)))
 
Theoremlemul1a 8640 Multiplication of both sides of 'less than or equal to' by a nonnegative number. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 21-Feb-2005.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))
 
Theoremlemul2a 8641 Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐶 · 𝐴) ≤ (𝐶 · 𝐵))
 
Theoremltmul12a 8642 Comparison of product of two positive numbers. (Contributed by NM, 30-Dec-2005.)
((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐴 · 𝐶) < (𝐵 · 𝐷))
 
Theoremlemul12b 8643 Comparison of product of two nonnegative numbers. (Contributed by NM, 22-Feb-2008.)
((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → ((𝐴𝐵𝐶𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)))
 
Theoremlemul12a 8644 Comparison of product of two nonnegative numbers. (Contributed by NM, 22-Feb-2008.)
((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐵𝐶𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)))
 
Theoremmulgt1 8645 The product of two numbers greater than 1 is greater than 1. (Contributed by NM, 13-Feb-2005.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) → 1 < (𝐴 · 𝐵))
 
Theoremltmulgt11 8646 Multiplication by a number greater than 1. (Contributed by NM, 24-Dec-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐵𝐴 < (𝐴 · 𝐵)))
 
Theoremltmulgt12 8647 Multiplication by a number greater than 1. (Contributed by NM, 24-Dec-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐵𝐴 < (𝐵 · 𝐴)))
 
Theoremlemulge11 8648 Multiplication by a number greater than or equal to 1. (Contributed by NM, 17-Dec-2005.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → 𝐴 ≤ (𝐴 · 𝐵))
 
Theoremlemulge12 8649 Multiplication by a number greater than or equal to 1. (Contributed by Paul Chapman, 21-Mar-2011.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → 𝐴 ≤ (𝐵 · 𝐴))
 
Theoremltdiv1 8650 Division of both sides of 'less than' by a positive number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐴 / 𝐶) < (𝐵 / 𝐶)))
 
Theoremlediv1 8651 Division of both sides of a less than or equal to relation by a positive number. (Contributed by NM, 18-Nov-2004.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐴 / 𝐶) ≤ (𝐵 / 𝐶)))
 
Theoremgt0div 8652 Division of a positive number by a positive number. (Contributed by NM, 28-Sep-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 < 𝐴 ↔ 0 < (𝐴 / 𝐵)))
 
Theoremge0div 8653 Division of a nonnegative number by a positive number. (Contributed by NM, 28-Sep-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 𝐵)))
 
Theoremdivgt0 8654 The ratio of two positive numbers is positive. (Contributed by NM, 12-Oct-1999.)
(((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 / 𝐵))
 
Theoremdivge0 8655 The ratio of nonnegative and positive numbers is nonnegative. (Contributed by NM, 27-Sep-1999.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵))
 
Theoremltmuldiv 8656 'Less than' relationship between division and multiplication. (Contributed by NM, 12-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) < 𝐵𝐴 < (𝐵 / 𝐶)))
 
Theoremltmuldiv2 8657 'Less than' relationship between division and multiplication. (Contributed by NM, 18-Nov-2004.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐶 · 𝐴) < 𝐵𝐴 < (𝐵 / 𝐶)))
 
Theoremltdivmul 8658 'Less than' relationship between division and multiplication. (Contributed by NM, 18-Nov-2004.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) < 𝐵𝐴 < (𝐶 · 𝐵)))
 
Theoremledivmul 8659 'Less than or equal to' relationship between division and multiplication. (Contributed by NM, 9-Dec-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) ≤ 𝐵𝐴 ≤ (𝐶 · 𝐵)))
 
Theoremltdivmul2 8660 'Less than' relationship between division and multiplication. (Contributed by NM, 24-Feb-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) < 𝐵𝐴 < (𝐵 · 𝐶)))
 
Theoremlt2mul2div 8661 'Less than' relationship between division and multiplication. (Contributed by NM, 8-Jan-2006.)
(((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 · 𝐵) < (𝐶 · 𝐷) ↔ (𝐴 / 𝐷) < (𝐶 / 𝐵)))
 
Theoremledivmul2 8662 'Less than or equal to' relationship between division and multiplication. (Contributed by NM, 9-Dec-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) ≤ 𝐵𝐴 ≤ (𝐵 · 𝐶)))
 
Theoremlemuldiv 8663 'Less than or equal' relationship between division and multiplication. (Contributed by NM, 10-Mar-2006.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) ≤ 𝐵𝐴 ≤ (𝐵 / 𝐶)))
 
Theoremlemuldiv2 8664 'Less than or equal' relationship between division and multiplication. (Contributed by NM, 10-Mar-2006.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐶 · 𝐴) ≤ 𝐵𝐴 ≤ (𝐵 / 𝐶)))
 
Theoremltrec 8665 The reciprocal of both sides of 'less than'. (Contributed by NM, 26-Sep-1999.) (Revised by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 < 𝐵 ↔ (1 / 𝐵) < (1 / 𝐴)))
 
Theoremlerec 8666 The reciprocal of both sides of 'less than or equal to'. (Contributed by NM, 3-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴𝐵 ↔ (1 / 𝐵) ≤ (1 / 𝐴)))
 
Theoremlt2msq1 8667 Lemma for lt2msq 8668. (Contributed by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴 · 𝐴) < (𝐵 · 𝐵))
 
Theoremlt2msq 8668 Two nonnegative numbers compare the same as their squares. (Contributed by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐴) < (𝐵 · 𝐵)))
 
Theoremltdiv2 8669 Division of a positive number by both sides of 'less than'. (Contributed by NM, 27-Apr-2005.)
(((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐶 / 𝐵) < (𝐶 / 𝐴)))
 
Theoremltrec1 8670 Reciprocal swap in a 'less than' relation. (Contributed by NM, 24-Feb-2005.)
(((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((1 / 𝐴) < 𝐵 ↔ (1 / 𝐵) < 𝐴))
 
Theoremlerec2 8671 Reciprocal swap in a 'less than or equal to' relation. (Contributed by NM, 24-Feb-2005.)
(((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 ≤ (1 / 𝐵) ↔ 𝐵 ≤ (1 / 𝐴)))
 
Theoremledivdiv 8672 Invert ratios of positive numbers and swap their ordering. (Contributed by NM, 9-Jan-2006.)
((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 / 𝐵) ≤ (𝐶 / 𝐷) ↔ (𝐷 / 𝐶) ≤ (𝐵 / 𝐴)))
 
Theoremlediv2 8673 Division of a positive number by both sides of 'less than or equal to'. (Contributed by NM, 10-Jan-2006.)
(((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐶 / 𝐵) ≤ (𝐶 / 𝐴)))
 
Theoremltdiv23 8674 Swap denominator with other side of 'less than'. (Contributed by NM, 3-Oct-1999.)
((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵))
 
Theoremlediv23 8675 Swap denominator with other side of 'less than or equal to'. (Contributed by NM, 30-May-2005.)
((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐵) ≤ 𝐶 ↔ (𝐴 / 𝐶) ≤ 𝐵))
 
Theoremlediv12a 8676 Comparison of ratio of two nonnegative numbers. (Contributed by NM, 31-Dec-2005.)
((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶))
 
Theoremlediv2a 8677 Division of both sides of 'less than or equal to' into a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007.)
((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴))
 
Theoremreclt1 8678 The reciprocal of a positive number less than 1 is greater than 1. (Contributed by NM, 23-Feb-2005.)
((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 < 1 ↔ 1 < (1 / 𝐴)))
 
Theoremrecgt1 8679 The reciprocal of a positive number greater than 1 is less than 1. (Contributed by NM, 28-Dec-2005.)
((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐴 ↔ (1 / 𝐴) < 1))
 
Theoremrecgt1i 8680 The reciprocal of a number greater than 1 is positive and less than 1. (Contributed by NM, 23-Feb-2005.)
((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (0 < (1 / 𝐴) ∧ (1 / 𝐴) < 1))
 
Theoremrecp1lt1 8681 Construct a number less than 1 from any nonnegative number. (Contributed by NM, 30-Dec-2005.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 / (1 + 𝐴)) < 1)
 
Theoremrecreclt 8682 Given a positive number 𝐴, construct a new positive number less than both 𝐴 and 1. (Contributed by NM, 28-Dec-2005.)
((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / (1 + (1 / 𝐴))) < 1 ∧ (1 / (1 + (1 / 𝐴))) < 𝐴))
 
Theoremle2msq 8683 The square function on nonnegative reals is monotonic. (Contributed by NM, 3-Aug-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴𝐵 ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐵)))
 
Theoremmsq11 8684 The square of a nonnegative number is a one-to-one function. (Contributed by NM, 29-Jul-1999.) (Revised by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐴) = (𝐵 · 𝐵) ↔ 𝐴 = 𝐵))
 
Theoremledivp1 8685 Less-than-or-equal-to and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 28-Sep-2005.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) · 𝐵) ≤ 𝐴)
 
Theoremsqueeze0 8686* If a nonnegative number is less than any positive number, it is zero. (Contributed by NM, 11-Feb-2006.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → 𝐴 = 0)
 
Theoremltp1i 8687 A number is less than itself plus 1. (Contributed by NM, 20-Aug-2001.)
𝐴 ∈ ℝ       𝐴 < (𝐴 + 1)
 
Theoremrecgt0i 8688 The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 15-May-1999.)
𝐴 ∈ ℝ       (0 < 𝐴 → 0 < (1 / 𝐴))
 
Theoremrecgt0ii 8689 The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 15-May-1999.)
𝐴 ∈ ℝ    &   0 < 𝐴       0 < (1 / 𝐴)
 
Theoremprodgt0i 8690 Infer that a multiplicand is positive from a nonnegative multiplier and positive product. (Contributed by NM, 15-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵)) → 0 < 𝐵)
 
Theoremprodge0i 8691 Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 < 𝐴 ∧ 0 ≤ (𝐴 · 𝐵)) → 0 ≤ 𝐵)
 
Theoremdivgt0i 8692 The ratio of two positive numbers is positive. (Contributed by NM, 16-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 / 𝐵))
 
Theoremdivge0i 8693 The ratio of nonnegative and positive numbers is nonnegative. (Contributed by NM, 12-Aug-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 < 𝐵) → 0 ≤ (𝐴 / 𝐵))
 
Theoremltreci 8694 The reciprocal of both sides of 'less than'. (Contributed by NM, 15-Sep-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 < 𝐴 ∧ 0 < 𝐵) → (𝐴 < 𝐵 ↔ (1 / 𝐵) < (1 / 𝐴)))
 
Theoremlereci 8695 The reciprocal of both sides of 'less than or equal to'. (Contributed by NM, 16-Sep-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 < 𝐴 ∧ 0 < 𝐵) → (𝐴𝐵 ↔ (1 / 𝐵) ≤ (1 / 𝐴)))
 
Theoremlt2msqi 8696 The square function on nonnegative reals is strictly monotonic. (Contributed by NM, 3-Aug-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐴) < (𝐵 · 𝐵)))
 
Theoremle2msqi 8697 The square function on nonnegative reals is monotonic. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴𝐵 ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐵)))
 
Theoremmsq11i 8698 The square of a nonnegative number is a one-to-one function. (Contributed by NM, 29-Jul-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((𝐴 · 𝐴) = (𝐵 · 𝐵) ↔ 𝐴 = 𝐵))
 
Theoremdivgt0i2i 8699 The ratio of two positive numbers is positive. (Contributed by NM, 16-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   0 < 𝐵       (0 < 𝐴 → 0 < (𝐴 / 𝐵))
 
Theoremltrecii 8700 The reciprocal of both sides of 'less than'. (Contributed by NM, 15-Sep-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   0 < 𝐴    &   0 < 𝐵       (𝐴 < 𝐵 ↔ (1 / 𝐵) < (1 / 𝐴))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13441
  Copyright terms: Public domain < Previous  Next >