HomeHome Intuitionistic Logic Explorer
Theorem List (p. 87 of 164)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8601-8700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremgt0ne0i 8601 Positive means nonzero (useful for ordering theorems involving division). (Contributed by NM, 16-Sep-1999.)
𝐴 ∈ ℝ       (0 < 𝐴𝐴 ≠ 0)
 
Theoremgt0ne0ii 8602 Positive implies nonzero. (Contributed by NM, 15-May-1999.)
𝐴 ∈ ℝ    &   0 < 𝐴       𝐴 ≠ 0
 
Theoremaddgt0i 8603 Addition of 2 positive numbers is positive. (Contributed by NM, 16-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 + 𝐵))
 
Theoremaddge0i 8604 Addition of 2 nonnegative numbers is nonnegative. (Contributed by NM, 28-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → 0 ≤ (𝐴 + 𝐵))
 
Theoremaddgegt0i 8605 Addition of nonnegative and positive numbers is positive. (Contributed by NM, 25-Sep-1999.) (Revised by Mario Carneiro, 27-May-2016.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 + 𝐵))
 
Theoremaddgt0ii 8606 Addition of 2 positive numbers is positive. (Contributed by NM, 18-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   0 < 𝐴    &   0 < 𝐵       0 < (𝐴 + 𝐵)
 
Theoremadd20i 8607 Two nonnegative numbers are zero iff their sum is zero. (Contributed by NM, 28-Jul-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((𝐴 + 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
 
Theoremltnegi 8608 Negative of both sides of 'less than'. Theorem I.23 of [Apostol] p. 20. (Contributed by NM, 21-Jan-1997.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 < 𝐵 ↔ -𝐵 < -𝐴)
 
Theoremlenegi 8609 Negative of both sides of 'less than or equal to'. (Contributed by NM, 1-Aug-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴𝐵 ↔ -𝐵 ≤ -𝐴)
 
Theoremltnegcon2i 8610 Contraposition of negative in 'less than'. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 < -𝐵𝐵 < -𝐴)
 
Theoremlesub0i 8611 Lemma to show a nonnegative number is zero. (Contributed by NM, 8-Oct-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴𝐵 ≤ (𝐵𝐴)) ↔ 𝐴 = 0)
 
Theoremltaddposi 8612 Adding a positive number to another number increases it. (Contributed by NM, 25-Aug-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (0 < 𝐴𝐵 < (𝐵 + 𝐴))
 
Theoremposdifi 8613 Comparison of two numbers whose difference is positive. (Contributed by NM, 19-Aug-2001.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴))
 
Theoremltnegcon1i 8614 Contraposition of negative in 'less than'. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (-𝐴 < 𝐵 ↔ -𝐵 < 𝐴)
 
Theoremlenegcon1i 8615 Contraposition of negative in 'less than or equal to'. (Contributed by NM, 6-Apr-2005.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (-𝐴𝐵 ↔ -𝐵𝐴)
 
Theoremsubge0i 8616 Nonnegative subtraction. (Contributed by NM, 13-Aug-2000.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (0 ≤ (𝐴𝐵) ↔ 𝐵𝐴)
 
Theoremltadd1i 8617 Addition to both sides of 'less than'. Theorem I.18 of [Apostol] p. 20. (Contributed by NM, 21-Jan-1997.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       (𝐴 < 𝐵 ↔ (𝐴 + 𝐶) < (𝐵 + 𝐶))
 
Theoremleadd1i 8618 Addition to both sides of 'less than or equal to'. (Contributed by NM, 11-Aug-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       (𝐴𝐵 ↔ (𝐴 + 𝐶) ≤ (𝐵 + 𝐶))
 
Theoremleadd2i 8619 Addition to both sides of 'less than or equal to'. (Contributed by NM, 11-Aug-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       (𝐴𝐵 ↔ (𝐶 + 𝐴) ≤ (𝐶 + 𝐵))
 
Theoremltsubaddi 8620 'Less than' relationship between subtraction and addition. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       ((𝐴𝐵) < 𝐶𝐴 < (𝐶 + 𝐵))
 
Theoremlesubaddi 8621 'Less than or equal to' relationship between subtraction and addition. (Contributed by NM, 30-Sep-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       ((𝐴𝐵) ≤ 𝐶𝐴 ≤ (𝐶 + 𝐵))
 
Theoremltsubadd2i 8622 'Less than' relationship between subtraction and addition. (Contributed by NM, 21-Jan-1997.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       ((𝐴𝐵) < 𝐶𝐴 < (𝐵 + 𝐶))
 
Theoremlesubadd2i 8623 'Less than or equal to' relationship between subtraction and addition. (Contributed by NM, 3-Aug-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       ((𝐴𝐵) ≤ 𝐶𝐴 ≤ (𝐵 + 𝐶))
 
Theoremltaddsubi 8624 'Less than' relationship between subtraction and addition. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       ((𝐴 + 𝐵) < 𝐶𝐴 < (𝐶𝐵))
 
Theoremlt2addi 8625 Adding both side of two inequalities. Theorem I.25 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ    &   𝐷 ∈ ℝ       ((𝐴 < 𝐶𝐵 < 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷))
 
Theoremle2addi 8626 Adding both side of two inequalities. (Contributed by NM, 16-Sep-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ    &   𝐷 ∈ ℝ       ((𝐴𝐶𝐵𝐷) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷))
 
Theoremgt0ne0d 8627 Positive implies nonzero. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑 → 0 < 𝐴)       (𝜑𝐴 ≠ 0)
 
Theoremlt0ne0d 8628 Something less than zero is not zero. Deduction form. See also lt0ap0d 8764 which is similar but for apartness. (Contributed by David Moews, 28-Feb-2017.)
(𝜑𝐴 < 0)       (𝜑𝐴 ≠ 0)
 
Theoremleidd 8629 'Less than or equal to' is reflexive. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑𝐴𝐴)
 
Theoremlt0neg1d 8630 Comparison of a number and its negative to zero. Theorem I.23 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (𝐴 < 0 ↔ 0 < -𝐴))
 
Theoremlt0neg2d 8631 Comparison of a number and its negative to zero. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (0 < 𝐴 ↔ -𝐴 < 0))
 
Theoremle0neg1d 8632 Comparison of a number and its negative to zero. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
 
Theoremle0neg2d 8633 Comparison of a number and its negative to zero. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (0 ≤ 𝐴 ↔ -𝐴 ≤ 0))
 
Theoremaddgegt0d 8634 Addition of nonnegative and positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑 → 0 < 𝐵)       (𝜑 → 0 < (𝐴 + 𝐵))
 
Theoremaddgtge0d 8635 Addition of positive and nonnegative numbers is positive. (Contributed by Asger C. Ipsen, 12-May-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 < 𝐴)    &   (𝜑 → 0 ≤ 𝐵)       (𝜑 → 0 < (𝐴 + 𝐵))
 
Theoremaddgt0d 8636 Addition of 2 positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 < 𝐴)    &   (𝜑 → 0 < 𝐵)       (𝜑 → 0 < (𝐴 + 𝐵))
 
Theoremaddge0d 8637 Addition of 2 nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑 → 0 ≤ 𝐵)       (𝜑 → 0 ≤ (𝐴 + 𝐵))
 
Theoremltnegd 8638 Negative of both sides of 'less than'. Theorem I.23 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 < 𝐵 ↔ -𝐵 < -𝐴))
 
Theoremlenegd 8639 Negative of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴𝐵 ↔ -𝐵 ≤ -𝐴))
 
Theoremltnegcon1d 8640 Contraposition of negative in 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → -𝐴 < 𝐵)       (𝜑 → -𝐵 < 𝐴)
 
Theoremltnegcon2d 8641 Contraposition of negative in 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < -𝐵)       (𝜑𝐵 < -𝐴)
 
Theoremlenegcon1d 8642 Contraposition of negative in 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → -𝐴𝐵)       (𝜑 → -𝐵𝐴)
 
Theoremlenegcon2d 8643 Contraposition of negative in 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 ≤ -𝐵)       (𝜑𝐵 ≤ -𝐴)
 
Theoremltaddposd 8644 Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (0 < 𝐴𝐵 < (𝐵 + 𝐴)))
 
Theoremltaddpos2d 8645 Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (0 < 𝐴𝐵 < (𝐴 + 𝐵)))
 
Theoremltsubposd 8646 Subtracting a positive number from another number decreases it. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (0 < 𝐴 ↔ (𝐵𝐴) < 𝐵))
 
Theoremposdifd 8647 Comparison of two numbers whose difference is positive. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
 
Theoremaddge01d 8648 A number is less than or equal to itself plus a nonnegative number. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (0 ≤ 𝐵𝐴 ≤ (𝐴 + 𝐵)))
 
Theoremaddge02d 8649 A number is less than or equal to itself plus a nonnegative number. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (0 ≤ 𝐵𝐴 ≤ (𝐵 + 𝐴)))
 
Theoremsubge0d 8650 Nonnegative subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (0 ≤ (𝐴𝐵) ↔ 𝐵𝐴))
 
Theoremsuble0d 8651 Nonpositive subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → ((𝐴𝐵) ≤ 0 ↔ 𝐴𝐵))
 
Theoremsubge02d 8652 Nonnegative subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (0 ≤ 𝐵 ↔ (𝐴𝐵) ≤ 𝐴))
 
Theoremltadd1d 8653 Addition to both sides of 'less than'. Theorem I.18 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 + 𝐶) < (𝐵 + 𝐶)))
 
Theoremleadd1d 8654 Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐴𝐵 ↔ (𝐴 + 𝐶) ≤ (𝐵 + 𝐶)))
 
Theoremleadd2d 8655 Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐴𝐵 ↔ (𝐶 + 𝐴) ≤ (𝐶 + 𝐵)))
 
Theoremltsubaddd 8656 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → ((𝐴𝐵) < 𝐶𝐴 < (𝐶 + 𝐵)))
 
Theoremlesubaddd 8657 'Less than or equal to' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → ((𝐴𝐵) ≤ 𝐶𝐴 ≤ (𝐶 + 𝐵)))
 
Theoremltsubadd2d 8658 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → ((𝐴𝐵) < 𝐶𝐴 < (𝐵 + 𝐶)))
 
Theoremlesubadd2d 8659 'Less than or equal to' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → ((𝐴𝐵) ≤ 𝐶𝐴 ≤ (𝐵 + 𝐶)))
 
Theoremltaddsubd 8660 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → ((𝐴 + 𝐵) < 𝐶𝐴 < (𝐶𝐵)))
 
Theoremltaddsub2d 8661 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 29-Dec-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → ((𝐴 + 𝐵) < 𝐶𝐵 < (𝐶𝐴)))
 
Theoremleaddsub2d 8662 'Less than or equal to' relationship between and addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → ((𝐴 + 𝐵) ≤ 𝐶𝐵 ≤ (𝐶𝐴)))
 
Theoremsubled 8663 Swap subtrahends in an inequality. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑 → (𝐴𝐵) ≤ 𝐶)       (𝜑 → (𝐴𝐶) ≤ 𝐵)
 
Theoremlesubd 8664 Swap subtrahends in an inequality. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 ≤ (𝐵𝐶))       (𝜑𝐶 ≤ (𝐵𝐴))
 
Theoremltsub23d 8665 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑 → (𝐴𝐵) < 𝐶)       (𝜑 → (𝐴𝐶) < 𝐵)
 
Theoremltsub13d 8666 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 < (𝐵𝐶))       (𝜑𝐶 < (𝐵𝐴))
 
Theoremlesub1d 8667 Subtraction from both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐴𝐵 ↔ (𝐴𝐶) ≤ (𝐵𝐶)))
 
Theoremlesub2d 8668 Subtraction of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐴𝐵 ↔ (𝐶𝐵) ≤ (𝐶𝐴)))
 
Theoremltsub1d 8669 Subtraction from both sides of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐴 < 𝐵 ↔ (𝐴𝐶) < (𝐵𝐶)))
 
Theoremltsub2d 8670 Subtraction of both sides of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐴 < 𝐵 ↔ (𝐶𝐵) < (𝐶𝐴)))
 
Theoremltadd1dd 8671 Addition to both sides of 'less than'. Theorem I.18 of [Apostol] p. 20. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑 → (𝐴 + 𝐶) < (𝐵 + 𝐶))
 
Theoremltsub1dd 8672 Subtraction from both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑 → (𝐴𝐶) < (𝐵𝐶))
 
Theoremltsub2dd 8673 Subtraction of both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑 → (𝐶𝐵) < (𝐶𝐴))
 
Theoremleadd1dd 8674 Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐴 + 𝐶) ≤ (𝐵 + 𝐶))
 
Theoremleadd2dd 8675 Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐶 + 𝐴) ≤ (𝐶 + 𝐵))
 
Theoremlesub1dd 8676 Subtraction from both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐴𝐶) ≤ (𝐵𝐶))
 
Theoremlesub2dd 8677 Subtraction of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐶𝐵) ≤ (𝐶𝐴))
 
Theoremle2addd 8678 Adding both side of two inequalities. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝐴𝐶)    &   (𝜑𝐵𝐷)       (𝜑 → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷))
 
Theoremle2subd 8679 Subtracting both sides of two 'less than or equal to' relations. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝐴𝐶)    &   (𝜑𝐵𝐷)       (𝜑 → (𝐴𝐷) ≤ (𝐶𝐵))
 
Theoremltleaddd 8680 Adding both sides of two orderings. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝐴 < 𝐶)    &   (𝜑𝐵𝐷)       (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷))
 
Theoremleltaddd 8681 Adding both sides of two orderings. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝐴𝐶)    &   (𝜑𝐵 < 𝐷)       (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷))
 
Theoremlt2addd 8682 Adding both side of two inequalities. Theorem I.25 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝐴 < 𝐶)    &   (𝜑𝐵 < 𝐷)       (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷))
 
Theoremlt2subd 8683 Subtracting both sides of two 'less than' relations. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝐴 < 𝐶)    &   (𝜑𝐵 < 𝐷)       (𝜑 → (𝐴𝐷) < (𝐶𝐵))
 
Theorempossumd 8684 Condition for a positive sum. (Contributed by Scott Fenton, 16-Dec-2017.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (0 < (𝐴 + 𝐵) ↔ -𝐵 < 𝐴))
 
Theoremsublt0d 8685 When a subtraction gives a negative result. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → ((𝐴𝐵) < 0 ↔ 𝐴 < 𝐵))
 
Theoremltaddsublt 8686 Addition and subtraction on one side of 'less than'. (Contributed by AV, 24-Nov-2018.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 ↔ ((𝐴 + 𝐵) − 𝐶) < 𝐴))
 
Theorem1le1 8687 1 ≤ 1. Common special case. (Contributed by David A. Wheeler, 16-Jul-2016.)
1 ≤ 1
 
Theoremgt0add 8688 A positive sum must have a positive addend. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 26-Jan-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → (0 < 𝐴 ∨ 0 < 𝐵))
 
4.3.5  Real Apartness
 
Syntaxcreap 8689 Class of real apartness relation.
class #
 
Definitiondf-reap 8690* Define real apartness. Definition in Section 11.2.1 of [HoTT], p. (varies). Although # is an apartness relation on the reals (see df-ap 8697 for more discussion of apartness relations), for our purposes it is just a stepping stone to defining # which is an apartness relation on complex numbers. On the reals, # and # agree (apreap 8702). (Contributed by Jim Kingdon, 26-Jan-2020.)
# = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑥 < 𝑦𝑦 < 𝑥))}
 
Theoremreapval 8691 Real apartness in terms of classes. Beyond the development of # itself, proofs should use reaplt 8703 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 29-Jan-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
 
Theoremreapirr 8692 Real apartness is irreflexive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). Beyond the development of # itself, proofs should use apirr 8720 instead. (Contributed by Jim Kingdon, 26-Jan-2020.)
(𝐴 ∈ ℝ → ¬ 𝐴 # 𝐴)
 
Theoremrecexre 8693* Existence of reciprocal of real number. (Contributed by Jim Kingdon, 29-Jan-2020.)
((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
 
Theoremreapti 8694 Real apartness is tight. Beyond the development of apartness itself, proofs should use apti 8737. (Contributed by Jim Kingdon, 30-Jan-2020.) (New usage is discouraged.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))
 
Theoremrecexgt0 8695* Existence of reciprocal of positive real number. (Contributed by Jim Kingdon, 6-Feb-2020.)
((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))
 
4.3.6  Complex Apartness
 
Syntaxcap 8696 Class of complex apartness relation.
class #
 
Definitiondf-ap 8697* Define complex apartness. Definition 6.1 of [Geuvers], p. 17.

Two numbers are considered apart if it is possible to separate them. One common usage is that we can divide by a number if it is apart from zero (see for example recclap 8794 which says that a number apart from zero has a reciprocal).

The defining characteristics of an apartness are irreflexivity (apirr 8720), symmetry (apsym 8721), and cotransitivity (apcotr 8722). Apartness implies negated equality, as seen at apne 8738, and the converse would also follow if we assumed excluded middle.

In addition, apartness of complex numbers is tight, which means that two numbers which are not apart are equal (apti 8737).

(Contributed by Jim Kingdon, 26-Jan-2020.)

# = {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
 
Theoremixi 8698 i times itself is minus 1. (Contributed by NM, 6-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
(i · i) = -1
 
Theoreminelr 8699 The imaginary unit i is not a real number. (Contributed by NM, 6-May-1999.)
¬ i ∈ ℝ
 
Theoremrimul 8700 A real number times the imaginary unit is real only if the number is 0. (Contributed by NM, 28-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → 𝐴 = 0)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16363
  Copyright terms: Public domain < Previous  Next >