Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  divmulap GIF version

Theorem divmulap 8488
 Description: Relationship between division and multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
Assertion
Ref Expression
divmulap ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ (𝐶 · 𝐵) = 𝐴))

Proof of Theorem divmulap
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 divvalap 8487 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) → (𝐴 / 𝐶) = (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴))
213expb 1183 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 / 𝐶) = (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴))
323adant2 1001 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 / 𝐶) = (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴))
43eqeq1d 2150 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴) = 𝐵))
5 simp2 983 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → 𝐵 ∈ ℂ)
6 receuap 8483 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) → ∃!𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴)
763expb 1183 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ∃!𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴)
873adant2 1001 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ∃!𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴)
9 oveq2 5794 . . . . 5 (𝑥 = 𝐵 → (𝐶 · 𝑥) = (𝐶 · 𝐵))
109eqeq1d 2150 . . . 4 (𝑥 = 𝐵 → ((𝐶 · 𝑥) = 𝐴 ↔ (𝐶 · 𝐵) = 𝐴))
1110riota2 5764 . . 3 ((𝐵 ∈ ℂ ∧ ∃!𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴) → ((𝐶 · 𝐵) = 𝐴 ↔ (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴) = 𝐵))
125, 8, 11syl2anc 409 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐶 · 𝐵) = 𝐴 ↔ (𝑥 ∈ ℂ (𝐶 · 𝑥) = 𝐴) = 𝐵))
134, 12bitr4d 190 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ (𝐶 · 𝐵) = 𝐴))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 963   = wceq 1332   ∈ wcel 2112  ∃!wreu 2420   class class class wbr 3939  ℩crio 5741  (class class class)co 5786  ℂcc 7671  0cc0 7673   · cmul 7678   # cap 8396   / cdiv 8485 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2114  ax-14 2115  ax-ext 2123  ax-sep 4056  ax-pow 4108  ax-pr 4142  ax-un 4366  ax-setind 4463  ax-cnex 7764  ax-resscn 7765  ax-1cn 7766  ax-1re 7767  ax-icn 7768  ax-addcl 7769  ax-addrcl 7770  ax-mulcl 7771  ax-mulrcl 7772  ax-addcom 7773  ax-mulcom 7774  ax-addass 7775  ax-mulass 7776  ax-distr 7777  ax-i2m1 7778  ax-0lt1 7779  ax-1rid 7780  ax-0id 7781  ax-rnegex 7782  ax-precex 7783  ax-cnre 7784  ax-pre-ltirr 7785  ax-pre-ltwlin 7786  ax-pre-lttrn 7787  ax-pre-apti 7788  ax-pre-ltadd 7789  ax-pre-mulgt0 7790  ax-pre-mulext 7791 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1732  df-eu 1993  df-mo 1994  df-clab 2128  df-cleq 2134  df-clel 2137  df-nfc 2272  df-ne 2311  df-nel 2406  df-ral 2423  df-rex 2424  df-reu 2425  df-rmo 2426  df-rab 2427  df-v 2693  df-sbc 2916  df-dif 3080  df-un 3082  df-in 3084  df-ss 3091  df-pw 3519  df-sn 3540  df-pr 3541  df-op 3543  df-uni 3747  df-br 3940  df-opab 4000  df-id 4226  df-po 4229  df-iso 4230  df-xp 4557  df-rel 4558  df-cnv 4559  df-co 4560  df-dm 4561  df-iota 5100  df-fun 5137  df-fv 5143  df-riota 5742  df-ov 5789  df-oprab 5790  df-mpo 5791  df-pnf 7855  df-mnf 7856  df-xr 7857  df-ltxr 7858  df-le 7859  df-sub 7988  df-neg 7989  df-reap 8390  df-ap 8397  df-div 8486 This theorem is referenced by:  divmulap2  8489  divcanap2  8493  divrecap  8501  divcanap3  8511  div0ap  8515  div1  8516  recrecap  8522  rec11ap  8523  divdivdivap  8526  ddcanap  8539  rerecclap  8543  div2negap  8548  divmulapzi  8576  divmulapd  8625  caucvgrelemrec  10812  odd2np1  11642  sqgcd  11789
 Copyright terms: Public domain W3C validator