Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > divfnzn | GIF version |
Description: Division restricted to ℤ × ℕ is a function. Given excluded middle, it would be easy to prove this for ℂ × (ℂ ∖ {0}). The key difference is that an element of ℕ is apart from zero, whereas being an element of ℂ ∖ {0} implies being not equal to zero. (Contributed by Jim Kingdon, 19-Mar-2020.) |
Ref | Expression |
---|---|
divfnzn | ⊢ ( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 9196 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
2 | 1 | ad2antrr 480 | . . . . . 6 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑥 ∈ ℂ) |
3 | nncn 8865 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
4 | 3 | ad2antlr 481 | . . . . . 6 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑦 ∈ ℂ) |
5 | simpr 109 | . . . . . 6 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ) | |
6 | nnap0 8886 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → 𝑦 # 0) | |
7 | 6 | ad2antlr 481 | . . . . . 6 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑦 # 0) |
8 | 2, 4, 5, 7 | divmulapd 8708 | . . . . 5 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → ((𝑥 / 𝑦) = 𝑧 ↔ (𝑦 · 𝑧) = 𝑥)) |
9 | 8 | riotabidva 5814 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (℩𝑧 ∈ ℂ (𝑥 / 𝑦) = 𝑧) = (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) |
10 | eqcom 2167 | . . . . . . 7 ⊢ (𝑧 = (𝑥 / 𝑦) ↔ (𝑥 / 𝑦) = 𝑧) | |
11 | 10 | a1i 9 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑧 = (𝑥 / 𝑦) ↔ (𝑥 / 𝑦) = 𝑧)) |
12 | 11 | riotabidv 5800 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (℩𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) = (℩𝑧 ∈ ℂ (𝑥 / 𝑦) = 𝑧)) |
13 | simpl 108 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℂ) | |
14 | 3 | adantl 275 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℂ) |
15 | 6 | adantl 275 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → 𝑦 # 0) |
16 | 13, 14, 15 | divclapd 8686 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℂ) |
17 | reueq 2925 | . . . . . . . 8 ⊢ ((𝑥 / 𝑦) ∈ ℂ ↔ ∃!𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) | |
18 | 16, 17 | sylib 121 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → ∃!𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) |
19 | riotacl 5812 | . . . . . . 7 ⊢ (∃!𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦) → (℩𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) ∈ ℂ) | |
20 | 18, 19 | syl 14 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → (℩𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) ∈ ℂ) |
21 | 1, 20 | sylan 281 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (℩𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) ∈ ℂ) |
22 | 12, 21 | eqeltrrd 2244 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (℩𝑧 ∈ ℂ (𝑥 / 𝑦) = 𝑧) ∈ ℂ) |
23 | 9, 22 | eqeltrrd 2244 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ ℂ) |
24 | 23 | rgen2 2552 | . 2 ⊢ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℕ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ ℂ |
25 | df-div 8569 | . . . . 5 ⊢ / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) | |
26 | 25 | reseq1i 4880 | . . . 4 ⊢ ( / ↾ (ℤ × ℕ)) = ((𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) ↾ (ℤ × ℕ)) |
27 | zsscn 9199 | . . . . 5 ⊢ ℤ ⊆ ℂ | |
28 | nncn 8865 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℂ) | |
29 | nnne0 8885 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → 𝑥 ≠ 0) | |
30 | eldifsn 3703 | . . . . . . 7 ⊢ (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) | |
31 | 28, 29, 30 | sylanbrc 414 | . . . . . 6 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ (ℂ ∖ {0})) |
32 | 31 | ssriv 3146 | . . . . 5 ⊢ ℕ ⊆ (ℂ ∖ {0}) |
33 | resmpo 5940 | . . . . 5 ⊢ ((ℤ ⊆ ℂ ∧ ℕ ⊆ (ℂ ∖ {0})) → ((𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) ↾ (ℤ × ℕ)) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))) | |
34 | 27, 32, 33 | mp2an 423 | . . . 4 ⊢ ((𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) ↾ (ℤ × ℕ)) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) |
35 | 26, 34 | eqtri 2186 | . . 3 ⊢ ( / ↾ (ℤ × ℕ)) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) |
36 | 35 | fnmpo 6170 | . 2 ⊢ (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℕ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ ℂ → ( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ)) |
37 | 24, 36 | ax-mp 5 | 1 ⊢ ( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 ∀wral 2444 ∃!wreu 2446 ∖ cdif 3113 ⊆ wss 3116 {csn 3576 class class class wbr 3982 × cxp 4602 ↾ cres 4606 Fn wfn 5183 ℩crio 5797 (class class class)co 5842 ∈ cmpo 5844 ℂcc 7751 0cc0 7753 · cmul 7758 # cap 8479 / cdiv 8568 ℕcn 8857 ℤcz 9191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-z 9192 |
This theorem is referenced by: elq 9560 qnnen 12364 |
Copyright terms: Public domain | W3C validator |