| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divfnzn | GIF version | ||
| Description: Division restricted to ℤ × ℕ is a function. Given excluded middle, it would be easy to prove this for ℂ × (ℂ ∖ {0}). The key difference is that an element of ℕ is apart from zero, whereas being an element of ℂ ∖ {0} implies being not equal to zero. (Contributed by Jim Kingdon, 19-Mar-2020.) |
| Ref | Expression |
|---|---|
| divfnzn | ⊢ ( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9412 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 2 | 1 | ad2antrr 488 | . . . . . 6 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑥 ∈ ℂ) |
| 3 | nncn 9079 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
| 4 | 3 | ad2antlr 489 | . . . . . 6 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑦 ∈ ℂ) |
| 5 | simpr 110 | . . . . . 6 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ) | |
| 6 | nnap0 9100 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → 𝑦 # 0) | |
| 7 | 6 | ad2antlr 489 | . . . . . 6 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑦 # 0) |
| 8 | 2, 4, 5, 7 | divmulapd 8920 | . . . . 5 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → ((𝑥 / 𝑦) = 𝑧 ↔ (𝑦 · 𝑧) = 𝑥)) |
| 9 | 8 | riotabidva 5939 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (℩𝑧 ∈ ℂ (𝑥 / 𝑦) = 𝑧) = (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) |
| 10 | eqcom 2209 | . . . . . . 7 ⊢ (𝑧 = (𝑥 / 𝑦) ↔ (𝑥 / 𝑦) = 𝑧) | |
| 11 | 10 | a1i 9 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑧 = (𝑥 / 𝑦) ↔ (𝑥 / 𝑦) = 𝑧)) |
| 12 | 11 | riotabidv 5924 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (℩𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) = (℩𝑧 ∈ ℂ (𝑥 / 𝑦) = 𝑧)) |
| 13 | simpl 109 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℂ) | |
| 14 | 3 | adantl 277 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℂ) |
| 15 | 6 | adantl 277 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → 𝑦 # 0) |
| 16 | 13, 14, 15 | divclapd 8898 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℂ) |
| 17 | reueq 2979 | . . . . . . . 8 ⊢ ((𝑥 / 𝑦) ∈ ℂ ↔ ∃!𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) | |
| 18 | 16, 17 | sylib 122 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → ∃!𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) |
| 19 | riotacl 5937 | . . . . . . 7 ⊢ (∃!𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦) → (℩𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) ∈ ℂ) | |
| 20 | 18, 19 | syl 14 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → (℩𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) ∈ ℂ) |
| 21 | 1, 20 | sylan 283 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (℩𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) ∈ ℂ) |
| 22 | 12, 21 | eqeltrrd 2285 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (℩𝑧 ∈ ℂ (𝑥 / 𝑦) = 𝑧) ∈ ℂ) |
| 23 | 9, 22 | eqeltrrd 2285 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ ℂ) |
| 24 | 23 | rgen2 2594 | . 2 ⊢ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℕ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ ℂ |
| 25 | df-div 8781 | . . . . 5 ⊢ / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) | |
| 26 | 25 | reseq1i 4974 | . . . 4 ⊢ ( / ↾ (ℤ × ℕ)) = ((𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) ↾ (ℤ × ℕ)) |
| 27 | zsscn 9415 | . . . . 5 ⊢ ℤ ⊆ ℂ | |
| 28 | nncn 9079 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℂ) | |
| 29 | nnne0 9099 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → 𝑥 ≠ 0) | |
| 30 | eldifsn 3771 | . . . . . . 7 ⊢ (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) | |
| 31 | 28, 29, 30 | sylanbrc 417 | . . . . . 6 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ (ℂ ∖ {0})) |
| 32 | 31 | ssriv 3205 | . . . . 5 ⊢ ℕ ⊆ (ℂ ∖ {0}) |
| 33 | resmpo 6066 | . . . . 5 ⊢ ((ℤ ⊆ ℂ ∧ ℕ ⊆ (ℂ ∖ {0})) → ((𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) ↾ (ℤ × ℕ)) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))) | |
| 34 | 27, 32, 33 | mp2an 426 | . . . 4 ⊢ ((𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) ↾ (ℤ × ℕ)) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) |
| 35 | 26, 34 | eqtri 2228 | . . 3 ⊢ ( / ↾ (ℤ × ℕ)) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) |
| 36 | 35 | fnmpo 6311 | . 2 ⊢ (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℕ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ ℂ → ( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ)) |
| 37 | 24, 36 | ax-mp 5 | 1 ⊢ ( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 ≠ wne 2378 ∀wral 2486 ∃!wreu 2488 ∖ cdif 3171 ⊆ wss 3174 {csn 3643 class class class wbr 4059 × cxp 4691 ↾ cres 4695 Fn wfn 5285 ℩crio 5921 (class class class)co 5967 ∈ cmpo 5969 ℂcc 7958 0cc0 7960 · cmul 7965 # cap 8689 / cdiv 8780 ℕcn 9071 ℤcz 9407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-z 9408 |
| This theorem is referenced by: elq 9778 qnnen 12917 |
| Copyright terms: Public domain | W3C validator |