![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > divfnzn | GIF version |
Description: Division restricted to ℤ × ℕ is a function. Given excluded middle, it would be easy to prove this for ℂ × (ℂ ∖ {0}). The key difference is that an element of ℕ is apart from zero, whereas being an element of ℂ ∖ {0} implies being not equal to zero. (Contributed by Jim Kingdon, 19-Mar-2020.) |
Ref | Expression |
---|---|
divfnzn | ⊢ ( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 9322 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
2 | 1 | ad2antrr 488 | . . . . . 6 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑥 ∈ ℂ) |
3 | nncn 8990 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
4 | 3 | ad2antlr 489 | . . . . . 6 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑦 ∈ ℂ) |
5 | simpr 110 | . . . . . 6 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ) | |
6 | nnap0 9011 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → 𝑦 # 0) | |
7 | 6 | ad2antlr 489 | . . . . . 6 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑦 # 0) |
8 | 2, 4, 5, 7 | divmulapd 8831 | . . . . 5 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → ((𝑥 / 𝑦) = 𝑧 ↔ (𝑦 · 𝑧) = 𝑥)) |
9 | 8 | riotabidva 5890 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (℩𝑧 ∈ ℂ (𝑥 / 𝑦) = 𝑧) = (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) |
10 | eqcom 2195 | . . . . . . 7 ⊢ (𝑧 = (𝑥 / 𝑦) ↔ (𝑥 / 𝑦) = 𝑧) | |
11 | 10 | a1i 9 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑧 = (𝑥 / 𝑦) ↔ (𝑥 / 𝑦) = 𝑧)) |
12 | 11 | riotabidv 5875 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (℩𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) = (℩𝑧 ∈ ℂ (𝑥 / 𝑦) = 𝑧)) |
13 | simpl 109 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℂ) | |
14 | 3 | adantl 277 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℂ) |
15 | 6 | adantl 277 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → 𝑦 # 0) |
16 | 13, 14, 15 | divclapd 8809 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℂ) |
17 | reueq 2959 | . . . . . . . 8 ⊢ ((𝑥 / 𝑦) ∈ ℂ ↔ ∃!𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) | |
18 | 16, 17 | sylib 122 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → ∃!𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) |
19 | riotacl 5888 | . . . . . . 7 ⊢ (∃!𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦) → (℩𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) ∈ ℂ) | |
20 | 18, 19 | syl 14 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → (℩𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) ∈ ℂ) |
21 | 1, 20 | sylan 283 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (℩𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) ∈ ℂ) |
22 | 12, 21 | eqeltrrd 2271 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (℩𝑧 ∈ ℂ (𝑥 / 𝑦) = 𝑧) ∈ ℂ) |
23 | 9, 22 | eqeltrrd 2271 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ ℂ) |
24 | 23 | rgen2 2580 | . 2 ⊢ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℕ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ ℂ |
25 | df-div 8692 | . . . . 5 ⊢ / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) | |
26 | 25 | reseq1i 4938 | . . . 4 ⊢ ( / ↾ (ℤ × ℕ)) = ((𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) ↾ (ℤ × ℕ)) |
27 | zsscn 9325 | . . . . 5 ⊢ ℤ ⊆ ℂ | |
28 | nncn 8990 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℂ) | |
29 | nnne0 9010 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → 𝑥 ≠ 0) | |
30 | eldifsn 3745 | . . . . . . 7 ⊢ (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) | |
31 | 28, 29, 30 | sylanbrc 417 | . . . . . 6 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ (ℂ ∖ {0})) |
32 | 31 | ssriv 3183 | . . . . 5 ⊢ ℕ ⊆ (ℂ ∖ {0}) |
33 | resmpo 6016 | . . . . 5 ⊢ ((ℤ ⊆ ℂ ∧ ℕ ⊆ (ℂ ∖ {0})) → ((𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) ↾ (ℤ × ℕ)) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))) | |
34 | 27, 32, 33 | mp2an 426 | . . . 4 ⊢ ((𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) ↾ (ℤ × ℕ)) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) |
35 | 26, 34 | eqtri 2214 | . . 3 ⊢ ( / ↾ (ℤ × ℕ)) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) |
36 | 35 | fnmpo 6255 | . 2 ⊢ (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℕ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ ℂ → ( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ)) |
37 | 24, 36 | ax-mp 5 | 1 ⊢ ( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ∀wral 2472 ∃!wreu 2474 ∖ cdif 3150 ⊆ wss 3153 {csn 3618 class class class wbr 4029 × cxp 4657 ↾ cres 4661 Fn wfn 5249 ℩crio 5872 (class class class)co 5918 ∈ cmpo 5920 ℂcc 7870 0cc0 7872 · cmul 7877 # cap 8600 / cdiv 8691 ℕcn 8982 ℤcz 9317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-po 4327 df-iso 4328 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-z 9318 |
This theorem is referenced by: elq 9687 qnnen 12588 |
Copyright terms: Public domain | W3C validator |