ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divfnzn GIF version

Theorem divfnzn 9816
Description: Division restricted to ℤ × ℕ is a function. Given excluded middle, it would be easy to prove this for ℂ × (ℂ ∖ {0}). The key difference is that an element of is apart from zero, whereas being an element of ℂ ∖ {0} implies being not equal to zero. (Contributed by Jim Kingdon, 19-Mar-2020.)
Assertion
Ref Expression
divfnzn ( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ)

Proof of Theorem divfnzn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zcn 9451 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
21ad2antrr 488 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑥 ∈ ℂ)
3 nncn 9118 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
43ad2antlr 489 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑦 ∈ ℂ)
5 simpr 110 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
6 nnap0 9139 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 # 0)
76ad2antlr 489 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑦 # 0)
82, 4, 5, 7divmulapd 8959 . . . . 5 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → ((𝑥 / 𝑦) = 𝑧 ↔ (𝑦 · 𝑧) = 𝑥))
98riotabidva 5972 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ ℂ (𝑥 / 𝑦) = 𝑧) = (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
10 eqcom 2231 . . . . . . 7 (𝑧 = (𝑥 / 𝑦) ↔ (𝑥 / 𝑦) = 𝑧)
1110a1i 9 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑧 = (𝑥 / 𝑦) ↔ (𝑥 / 𝑦) = 𝑧))
1211riotabidv 5956 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) = (𝑧 ∈ ℂ (𝑥 / 𝑦) = 𝑧))
13 simpl 109 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℂ)
143adantl 277 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℂ)
156adantl 277 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → 𝑦 # 0)
1613, 14, 15divclapd 8937 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℂ)
17 reueq 3002 . . . . . . . 8 ((𝑥 / 𝑦) ∈ ℂ ↔ ∃!𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦))
1816, 17sylib 122 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → ∃!𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦))
19 riotacl 5970 . . . . . . 7 (∃!𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦) → (𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) ∈ ℂ)
2018, 19syl 14 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) ∈ ℂ)
211, 20sylan 283 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) ∈ ℂ)
2212, 21eqeltrrd 2307 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ ℂ (𝑥 / 𝑦) = 𝑧) ∈ ℂ)
239, 22eqeltrrd 2307 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ ℂ)
2423rgen2 2616 . 2 𝑥 ∈ ℤ ∀𝑦 ∈ ℕ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ ℂ
25 df-div 8820 . . . . 5 / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
2625reseq1i 5001 . . . 4 ( / ↾ (ℤ × ℕ)) = ((𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) ↾ (ℤ × ℕ))
27 zsscn 9454 . . . . 5 ℤ ⊆ ℂ
28 nncn 9118 . . . . . . 7 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
29 nnne0 9138 . . . . . . 7 (𝑥 ∈ ℕ → 𝑥 ≠ 0)
30 eldifsn 3795 . . . . . . 7 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
3128, 29, 30sylanbrc 417 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ∈ (ℂ ∖ {0}))
3231ssriv 3228 . . . . 5 ℕ ⊆ (ℂ ∖ {0})
33 resmpo 6102 . . . . 5 ((ℤ ⊆ ℂ ∧ ℕ ⊆ (ℂ ∖ {0})) → ((𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) ↾ (ℤ × ℕ)) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)))
3427, 32, 33mp2an 426 . . . 4 ((𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) ↾ (ℤ × ℕ)) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
3526, 34eqtri 2250 . . 3 ( / ↾ (ℤ × ℕ)) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
3635fnmpo 6348 . 2 (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℕ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ ℂ → ( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ))
3724, 36ax-mp 5 1 ( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1395  wcel 2200  wne 2400  wral 2508  ∃!wreu 2510  cdif 3194  wss 3197  {csn 3666   class class class wbr 4083   × cxp 4717  cres 4721   Fn wfn 5313  crio 5953  (class class class)co 6001  cmpo 6003  cc 7997  0cc0 7999   · cmul 8004   # cap 8728   / cdiv 8819  cn 9110  cz 9446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-z 9447
This theorem is referenced by:  elq  9817  qnnen  13002
  Copyright terms: Public domain W3C validator