ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divfnzn GIF version

Theorem divfnzn 9623
Description: Division restricted to ℤ × ℕ is a function. Given excluded middle, it would be easy to prove this for ℂ × (ℂ ∖ {0}). The key difference is that an element of is apart from zero, whereas being an element of ℂ ∖ {0} implies being not equal to zero. (Contributed by Jim Kingdon, 19-Mar-2020.)
Assertion
Ref Expression
divfnzn ( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ)

Proof of Theorem divfnzn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zcn 9260 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
21ad2antrr 488 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑥 ∈ ℂ)
3 nncn 8929 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
43ad2antlr 489 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑦 ∈ ℂ)
5 simpr 110 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
6 nnap0 8950 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 # 0)
76ad2antlr 489 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑦 # 0)
82, 4, 5, 7divmulapd 8771 . . . . 5 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → ((𝑥 / 𝑦) = 𝑧 ↔ (𝑦 · 𝑧) = 𝑥))
98riotabidva 5849 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ ℂ (𝑥 / 𝑦) = 𝑧) = (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
10 eqcom 2179 . . . . . . 7 (𝑧 = (𝑥 / 𝑦) ↔ (𝑥 / 𝑦) = 𝑧)
1110a1i 9 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑧 = (𝑥 / 𝑦) ↔ (𝑥 / 𝑦) = 𝑧))
1211riotabidv 5835 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) = (𝑧 ∈ ℂ (𝑥 / 𝑦) = 𝑧))
13 simpl 109 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℂ)
143adantl 277 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℂ)
156adantl 277 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → 𝑦 # 0)
1613, 14, 15divclapd 8749 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℂ)
17 reueq 2938 . . . . . . . 8 ((𝑥 / 𝑦) ∈ ℂ ↔ ∃!𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦))
1816, 17sylib 122 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → ∃!𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦))
19 riotacl 5847 . . . . . . 7 (∃!𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦) → (𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) ∈ ℂ)
2018, 19syl 14 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) ∈ ℂ)
211, 20sylan 283 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) ∈ ℂ)
2212, 21eqeltrrd 2255 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ ℂ (𝑥 / 𝑦) = 𝑧) ∈ ℂ)
239, 22eqeltrrd 2255 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ ℂ)
2423rgen2 2563 . 2 𝑥 ∈ ℤ ∀𝑦 ∈ ℕ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ ℂ
25 df-div 8632 . . . . 5 / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
2625reseq1i 4905 . . . 4 ( / ↾ (ℤ × ℕ)) = ((𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) ↾ (ℤ × ℕ))
27 zsscn 9263 . . . . 5 ℤ ⊆ ℂ
28 nncn 8929 . . . . . . 7 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
29 nnne0 8949 . . . . . . 7 (𝑥 ∈ ℕ → 𝑥 ≠ 0)
30 eldifsn 3721 . . . . . . 7 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
3128, 29, 30sylanbrc 417 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ∈ (ℂ ∖ {0}))
3231ssriv 3161 . . . . 5 ℕ ⊆ (ℂ ∖ {0})
33 resmpo 5975 . . . . 5 ((ℤ ⊆ ℂ ∧ ℕ ⊆ (ℂ ∖ {0})) → ((𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) ↾ (ℤ × ℕ)) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)))
3427, 32, 33mp2an 426 . . . 4 ((𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) ↾ (ℤ × ℕ)) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
3526, 34eqtri 2198 . . 3 ( / ↾ (ℤ × ℕ)) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
3635fnmpo 6205 . 2 (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℕ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ ℂ → ( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ))
3724, 36ax-mp 5 1 ( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1353  wcel 2148  wne 2347  wral 2455  ∃!wreu 2457  cdif 3128  wss 3131  {csn 3594   class class class wbr 4005   × cxp 4626  cres 4630   Fn wfn 5213  crio 5832  (class class class)co 5877  cmpo 5879  cc 7811  0cc0 7813   · cmul 7818   # cap 8540   / cdiv 8631  cn 8921  cz 9255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-z 9256
This theorem is referenced by:  elq  9624  qnnen  12434
  Copyright terms: Public domain W3C validator