| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divfnzn | GIF version | ||
| Description: Division restricted to ℤ × ℕ is a function. Given excluded middle, it would be easy to prove this for ℂ × (ℂ ∖ {0}). The key difference is that an element of ℕ is apart from zero, whereas being an element of ℂ ∖ {0} implies being not equal to zero. (Contributed by Jim Kingdon, 19-Mar-2020.) |
| Ref | Expression |
|---|---|
| divfnzn | ⊢ ( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9348 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 2 | 1 | ad2antrr 488 | . . . . . 6 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑥 ∈ ℂ) |
| 3 | nncn 9015 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
| 4 | 3 | ad2antlr 489 | . . . . . 6 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑦 ∈ ℂ) |
| 5 | simpr 110 | . . . . . 6 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ) | |
| 6 | nnap0 9036 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → 𝑦 # 0) | |
| 7 | 6 | ad2antlr 489 | . . . . . 6 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑦 # 0) |
| 8 | 2, 4, 5, 7 | divmulapd 8856 | . . . . 5 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → ((𝑥 / 𝑦) = 𝑧 ↔ (𝑦 · 𝑧) = 𝑥)) |
| 9 | 8 | riotabidva 5897 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (℩𝑧 ∈ ℂ (𝑥 / 𝑦) = 𝑧) = (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) |
| 10 | eqcom 2198 | . . . . . . 7 ⊢ (𝑧 = (𝑥 / 𝑦) ↔ (𝑥 / 𝑦) = 𝑧) | |
| 11 | 10 | a1i 9 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑧 = (𝑥 / 𝑦) ↔ (𝑥 / 𝑦) = 𝑧)) |
| 12 | 11 | riotabidv 5882 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (℩𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) = (℩𝑧 ∈ ℂ (𝑥 / 𝑦) = 𝑧)) |
| 13 | simpl 109 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℂ) | |
| 14 | 3 | adantl 277 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℂ) |
| 15 | 6 | adantl 277 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → 𝑦 # 0) |
| 16 | 13, 14, 15 | divclapd 8834 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℂ) |
| 17 | reueq 2963 | . . . . . . . 8 ⊢ ((𝑥 / 𝑦) ∈ ℂ ↔ ∃!𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) | |
| 18 | 16, 17 | sylib 122 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → ∃!𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) |
| 19 | riotacl 5895 | . . . . . . 7 ⊢ (∃!𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦) → (℩𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) ∈ ℂ) | |
| 20 | 18, 19 | syl 14 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → (℩𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) ∈ ℂ) |
| 21 | 1, 20 | sylan 283 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (℩𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) ∈ ℂ) |
| 22 | 12, 21 | eqeltrrd 2274 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (℩𝑧 ∈ ℂ (𝑥 / 𝑦) = 𝑧) ∈ ℂ) |
| 23 | 9, 22 | eqeltrrd 2274 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ ℂ) |
| 24 | 23 | rgen2 2583 | . 2 ⊢ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℕ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ ℂ |
| 25 | df-div 8717 | . . . . 5 ⊢ / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) | |
| 26 | 25 | reseq1i 4943 | . . . 4 ⊢ ( / ↾ (ℤ × ℕ)) = ((𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) ↾ (ℤ × ℕ)) |
| 27 | zsscn 9351 | . . . . 5 ⊢ ℤ ⊆ ℂ | |
| 28 | nncn 9015 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℂ) | |
| 29 | nnne0 9035 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → 𝑥 ≠ 0) | |
| 30 | eldifsn 3750 | . . . . . . 7 ⊢ (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) | |
| 31 | 28, 29, 30 | sylanbrc 417 | . . . . . 6 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ (ℂ ∖ {0})) |
| 32 | 31 | ssriv 3188 | . . . . 5 ⊢ ℕ ⊆ (ℂ ∖ {0}) |
| 33 | resmpo 6024 | . . . . 5 ⊢ ((ℤ ⊆ ℂ ∧ ℕ ⊆ (ℂ ∖ {0})) → ((𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) ↾ (ℤ × ℕ)) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))) | |
| 34 | 27, 32, 33 | mp2an 426 | . . . 4 ⊢ ((𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) ↾ (ℤ × ℕ)) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) |
| 35 | 26, 34 | eqtri 2217 | . . 3 ⊢ ( / ↾ (ℤ × ℕ)) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) |
| 36 | 35 | fnmpo 6269 | . 2 ⊢ (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℕ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ ℂ → ( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ)) |
| 37 | 24, 36 | ax-mp 5 | 1 ⊢ ( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ∀wral 2475 ∃!wreu 2477 ∖ cdif 3154 ⊆ wss 3157 {csn 3623 class class class wbr 4034 × cxp 4662 ↾ cres 4666 Fn wfn 5254 ℩crio 5879 (class class class)co 5925 ∈ cmpo 5927 ℂcc 7894 0cc0 7896 · cmul 7901 # cap 8625 / cdiv 8716 ℕcn 9007 ℤcz 9343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-z 9344 |
| This theorem is referenced by: elq 9713 qnnen 12673 |
| Copyright terms: Public domain | W3C validator |