ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divfnzn GIF version

Theorem divfnzn 9742
Description: Division restricted to ℤ × ℕ is a function. Given excluded middle, it would be easy to prove this for ℂ × (ℂ ∖ {0}). The key difference is that an element of is apart from zero, whereas being an element of ℂ ∖ {0} implies being not equal to zero. (Contributed by Jim Kingdon, 19-Mar-2020.)
Assertion
Ref Expression
divfnzn ( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ)

Proof of Theorem divfnzn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zcn 9377 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
21ad2antrr 488 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑥 ∈ ℂ)
3 nncn 9044 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
43ad2antlr 489 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑦 ∈ ℂ)
5 simpr 110 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
6 nnap0 9065 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 # 0)
76ad2antlr 489 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑦 # 0)
82, 4, 5, 7divmulapd 8885 . . . . 5 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → ((𝑥 / 𝑦) = 𝑧 ↔ (𝑦 · 𝑧) = 𝑥))
98riotabidva 5916 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ ℂ (𝑥 / 𝑦) = 𝑧) = (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
10 eqcom 2207 . . . . . . 7 (𝑧 = (𝑥 / 𝑦) ↔ (𝑥 / 𝑦) = 𝑧)
1110a1i 9 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑧 = (𝑥 / 𝑦) ↔ (𝑥 / 𝑦) = 𝑧))
1211riotabidv 5901 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) = (𝑧 ∈ ℂ (𝑥 / 𝑦) = 𝑧))
13 simpl 109 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℂ)
143adantl 277 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℂ)
156adantl 277 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → 𝑦 # 0)
1613, 14, 15divclapd 8863 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℂ)
17 reueq 2972 . . . . . . . 8 ((𝑥 / 𝑦) ∈ ℂ ↔ ∃!𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦))
1816, 17sylib 122 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → ∃!𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦))
19 riotacl 5914 . . . . . . 7 (∃!𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦) → (𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) ∈ ℂ)
2018, 19syl 14 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) ∈ ℂ)
211, 20sylan 283 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ ℂ 𝑧 = (𝑥 / 𝑦)) ∈ ℂ)
2212, 21eqeltrrd 2283 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ ℂ (𝑥 / 𝑦) = 𝑧) ∈ ℂ)
239, 22eqeltrrd 2283 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ ℂ)
2423rgen2 2592 . 2 𝑥 ∈ ℤ ∀𝑦 ∈ ℕ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ ℂ
25 df-div 8746 . . . . 5 / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
2625reseq1i 4955 . . . 4 ( / ↾ (ℤ × ℕ)) = ((𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) ↾ (ℤ × ℕ))
27 zsscn 9380 . . . . 5 ℤ ⊆ ℂ
28 nncn 9044 . . . . . . 7 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
29 nnne0 9064 . . . . . . 7 (𝑥 ∈ ℕ → 𝑥 ≠ 0)
30 eldifsn 3760 . . . . . . 7 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
3128, 29, 30sylanbrc 417 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ∈ (ℂ ∖ {0}))
3231ssriv 3197 . . . . 5 ℕ ⊆ (ℂ ∖ {0})
33 resmpo 6043 . . . . 5 ((ℤ ⊆ ℂ ∧ ℕ ⊆ (ℂ ∖ {0})) → ((𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) ↾ (ℤ × ℕ)) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)))
3427, 32, 33mp2an 426 . . . 4 ((𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) ↾ (ℤ × ℕ)) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
3526, 34eqtri 2226 . . 3 ( / ↾ (ℤ × ℕ)) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
3635fnmpo 6288 . 2 (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℕ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ ℂ → ( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ))
3724, 36ax-mp 5 1 ( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1373  wcel 2176  wne 2376  wral 2484  ∃!wreu 2486  cdif 3163  wss 3166  {csn 3633   class class class wbr 4044   × cxp 4673  cres 4677   Fn wfn 5266  crio 5898  (class class class)co 5944  cmpo 5946  cc 7923  0cc0 7925   · cmul 7930   # cap 8654   / cdiv 8745  cn 9036  cz 9372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-z 9373
This theorem is referenced by:  elq  9743  qnnen  12802
  Copyright terms: Public domain W3C validator