Step | Hyp | Ref
| Expression |
1 | | df-dvap 14062 |
. . . 4
β’ D =
(π β π«
β, π β (β
βpm π ) β¦ βͺ
π₯ β
((intβ((MetOpenβ(abs β β )) βΎt π ))βdom π)({π₯} Γ ((π§ β {π€ β dom π β£ π€ # π₯} β¦ (((πβπ§) β (πβπ₯)) / (π§ β π₯))) limβ π₯))) |
2 | 1 | a1i 9 |
. . 3
β’ ((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β D = (π β π« β, π β (β βpm
π ) β¦ βͺ π₯ β ((intβ((MetOpenβ(abs
β β )) βΎt π ))βdom π)({π₯} Γ ((π§ β {π€ β dom π β£ π€ # π₯} β¦ (((πβπ§) β (πβπ₯)) / (π§ β π₯))) limβ π₯)))) |
3 | | dvval.k |
. . . . . . . 8
β’ πΎ = (MetOpenβ(abs β
β )) |
4 | 3 | oveq1i 5884 |
. . . . . . 7
β’ (πΎ βΎt π ) = ((MetOpenβ(abs β
β )) βΎt π ) |
5 | | simprl 529 |
. . . . . . . . 9
β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ (π = π β§ π = πΉ)) β π = π) |
6 | 5 | oveq2d 5890 |
. . . . . . . 8
β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ (π = π β§ π = πΉ)) β (πΎ βΎt π ) = (πΎ βΎt π)) |
7 | | dvval.t |
. . . . . . . 8
β’ π = (πΎ βΎt π) |
8 | 6, 7 | eqtr4di 2228 |
. . . . . . 7
β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ (π = π β§ π = πΉ)) β (πΎ βΎt π ) = π) |
9 | 4, 8 | eqtr3id 2224 |
. . . . . 6
β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ (π = π β§ π = πΉ)) β ((MetOpenβ(abs β
β )) βΎt π ) = π) |
10 | 9 | fveq2d 5519 |
. . . . 5
β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ (π = π β§ π = πΉ)) β (intβ((MetOpenβ(abs
β β )) βΎt π )) = (intβπ)) |
11 | | simprr 531 |
. . . . . . 7
β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ (π = π β§ π = πΉ)) β π = πΉ) |
12 | 11 | dmeqd 4829 |
. . . . . 6
β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ (π = π β§ π = πΉ)) β dom π = dom πΉ) |
13 | | simpl2 1001 |
. . . . . . 7
β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ (π = π β§ π = πΉ)) β πΉ:π΄βΆβ) |
14 | 13 | fdmd 5372 |
. . . . . 6
β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ (π = π β§ π = πΉ)) β dom πΉ = π΄) |
15 | 12, 14 | eqtrd 2210 |
. . . . 5
β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ (π = π β§ π = πΉ)) β dom π = π΄) |
16 | 10, 15 | fveq12d 5522 |
. . . 4
β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ (π = π β§ π = πΉ)) β ((intβ((MetOpenβ(abs
β β )) βΎt π ))βdom π) = ((intβπ)βπ΄)) |
17 | 15 | rabeqdv 2731 |
. . . . . . 7
β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ (π = π β§ π = πΉ)) β {π€ β dom π β£ π€ # π₯} = {π€ β π΄ β£ π€ # π₯}) |
18 | 11 | fveq1d 5517 |
. . . . . . . . 9
β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ (π = π β§ π = πΉ)) β (πβπ§) = (πΉβπ§)) |
19 | 11 | fveq1d 5517 |
. . . . . . . . 9
β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ (π = π β§ π = πΉ)) β (πβπ₯) = (πΉβπ₯)) |
20 | 18, 19 | oveq12d 5892 |
. . . . . . . 8
β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ (π = π β§ π = πΉ)) β ((πβπ§) β (πβπ₯)) = ((πΉβπ§) β (πΉβπ₯))) |
21 | 20 | oveq1d 5889 |
. . . . . . 7
β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ (π = π β§ π = πΉ)) β (((πβπ§) β (πβπ₯)) / (π§ β π₯)) = (((πΉβπ§) β (πΉβπ₯)) / (π§ β π₯))) |
22 | 17, 21 | mpteq12dv 4085 |
. . . . . 6
β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ (π = π β§ π = πΉ)) β (π§ β {π€ β dom π β£ π€ # π₯} β¦ (((πβπ§) β (πβπ₯)) / (π§ β π₯))) = (π§ β {π€ β π΄ β£ π€ # π₯} β¦ (((πΉβπ§) β (πΉβπ₯)) / (π§ β π₯)))) |
23 | 22 | oveq1d 5889 |
. . . . 5
β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ (π = π β§ π = πΉ)) β ((π§ β {π€ β dom π β£ π€ # π₯} β¦ (((πβπ§) β (πβπ₯)) / (π§ β π₯))) limβ π₯) = ((π§ β {π€ β π΄ β£ π€ # π₯} β¦ (((πΉβπ§) β (πΉβπ₯)) / (π§ β π₯))) limβ π₯)) |
24 | 23 | xpeq2d 4650 |
. . . 4
β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ (π = π β§ π = πΉ)) β ({π₯} Γ ((π§ β {π€ β dom π β£ π€ # π₯} β¦ (((πβπ§) β (πβπ₯)) / (π§ β π₯))) limβ π₯)) = ({π₯} Γ ((π§ β {π€ β π΄ β£ π€ # π₯} β¦ (((πΉβπ§) β (πΉβπ₯)) / (π§ β π₯))) limβ π₯))) |
25 | 16, 24 | iuneq12d 3910 |
. . 3
β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ (π = π β§ π = πΉ)) β βͺ π₯ β ((intβ((MetOpenβ(abs
β β )) βΎt π ))βdom π)({π₯} Γ ((π§ β {π€ β dom π β£ π€ # π₯} β¦ (((πβπ§) β (πβπ₯)) / (π§ β π₯))) limβ π₯)) = βͺ
π₯ β ((intβπ)βπ΄)({π₯} Γ ((π§ β {π€ β π΄ β£ π€ # π₯} β¦ (((πΉβπ§) β (πΉβπ₯)) / (π§ β π₯))) limβ π₯))) |
26 | | simpr 110 |
. . . 4
β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ π = π) β π = π) |
27 | 26 | oveq2d 5890 |
. . 3
β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ π = π) β (β βpm
π ) = (β
βpm π)) |
28 | | simp1 997 |
. . . 4
β’ ((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β π β β) |
29 | | cnex 7934 |
. . . . 5
β’ β
β V |
30 | 29 | elpw2 4157 |
. . . 4
β’ (π β π« β β
π β
β) |
31 | 28, 30 | sylibr 134 |
. . 3
β’ ((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β π β π« β) |
32 | 29 | a1i 9 |
. . . 4
β’ ((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β β β V) |
33 | | simp2 998 |
. . . 4
β’ ((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β πΉ:π΄βΆβ) |
34 | | simp3 999 |
. . . 4
β’ ((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β π΄ β π) |
35 | | elpm2r 6665 |
. . . 4
β’
(((β β V β§ π β π« β) β§ (πΉ:π΄βΆβ β§ π΄ β π)) β πΉ β (β βpm
π)) |
36 | 32, 31, 33, 34, 35 | syl22anc 1239 |
. . 3
β’ ((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β πΉ β (β βpm
π)) |
37 | 3 | cntoptopon 13968 |
. . . . . . . . 9
β’ πΎ β
(TopOnββ) |
38 | | resttopon 13607 |
. . . . . . . . 9
β’ ((πΎ β (TopOnββ)
β§ π β β)
β (πΎ
βΎt π)
β (TopOnβπ)) |
39 | 37, 28, 38 | sylancr 414 |
. . . . . . . 8
β’ ((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β (πΎ βΎt π) β (TopOnβπ)) |
40 | 7, 39 | eqeltrid 2264 |
. . . . . . 7
β’ ((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β π β (TopOnβπ)) |
41 | | topontop 13450 |
. . . . . . 7
β’ (π β (TopOnβπ) β π β Top) |
42 | 40, 41 | syl 14 |
. . . . . 6
β’ ((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β π β Top) |
43 | | toponuni 13451 |
. . . . . . . 8
β’ (π β (TopOnβπ) β π = βͺ π) |
44 | 40, 43 | syl 14 |
. . . . . . 7
β’ ((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β π = βͺ π) |
45 | 34, 44 | sseqtrd 3193 |
. . . . . 6
β’ ((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β π΄ β βͺ π) |
46 | | eqid 2177 |
. . . . . . 7
β’ βͺ π =
βͺ π |
47 | 46 | ntropn 13553 |
. . . . . 6
β’ ((π β Top β§ π΄ β βͺ π)
β ((intβπ)βπ΄) β π) |
48 | 42, 45, 47 | syl2anc 411 |
. . . . 5
β’ ((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β ((intβπ)βπ΄) β π) |
49 | | xpexg 4740 |
. . . . 5
β’
((((intβπ)βπ΄) β π β§ β β V) β
(((intβπ)βπ΄) Γ β) β
V) |
50 | 48, 32, 49 | syl2anc 411 |
. . . 4
β’ ((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β (((intβπ)βπ΄) Γ β) β
V) |
51 | | limccl 14064 |
. . . . . . . . 9
β’ ((π§ β {π€ β π΄ β£ π€ # π₯} β¦ (((πΉβπ§) β (πΉβπ₯)) / (π§ β π₯))) limβ π₯) β β |
52 | | xpss2 4737 |
. . . . . . . . 9
β’ (((π§ β {π€ β π΄ β£ π€ # π₯} β¦ (((πΉβπ§) β (πΉβπ₯)) / (π§ β π₯))) limβ π₯) β β β ({π₯} Γ ((π§ β {π€ β π΄ β£ π€ # π₯} β¦ (((πΉβπ§) β (πΉβπ₯)) / (π§ β π₯))) limβ π₯)) β ({π₯} Γ β)) |
53 | 51, 52 | ax-mp 5 |
. . . . . . . 8
β’ ({π₯} Γ ((π§ β {π€ β π΄ β£ π€ # π₯} β¦ (((πΉβπ§) β (πΉβπ₯)) / (π§ β π₯))) limβ π₯)) β ({π₯} Γ β) |
54 | 53 | rgenw 2532 |
. . . . . . 7
β’
βπ₯ β
((intβπ)βπ΄)({π₯} Γ ((π§ β {π€ β π΄ β£ π€ # π₯} β¦ (((πΉβπ§) β (πΉβπ₯)) / (π§ β π₯))) limβ π₯)) β ({π₯} Γ β) |
55 | | ss2iun 3901 |
. . . . . . 7
β’
(βπ₯ β
((intβπ)βπ΄)({π₯} Γ ((π§ β {π€ β π΄ β£ π€ # π₯} β¦ (((πΉβπ§) β (πΉβπ₯)) / (π§ β π₯))) limβ π₯)) β ({π₯} Γ β) β βͺ π₯ β ((intβπ)βπ΄)({π₯} Γ ((π§ β {π€ β π΄ β£ π€ # π₯} β¦ (((πΉβπ§) β (πΉβπ₯)) / (π§ β π₯))) limβ π₯)) β βͺ π₯ β ((intβπ)βπ΄)({π₯} Γ β)) |
56 | 54, 55 | ax-mp 5 |
. . . . . 6
β’ βͺ π₯ β ((intβπ)βπ΄)({π₯} Γ ((π§ β {π€ β π΄ β£ π€ # π₯} β¦ (((πΉβπ§) β (πΉβπ₯)) / (π§ β π₯))) limβ π₯)) β βͺ π₯ β ((intβπ)βπ΄)({π₯} Γ β) |
57 | | iunxpconst 4686 |
. . . . . 6
β’ βͺ π₯ β ((intβπ)βπ΄)({π₯} Γ β) = (((intβπ)βπ΄) Γ β) |
58 | 56, 57 | sseqtri 3189 |
. . . . 5
β’ βͺ π₯ β ((intβπ)βπ΄)({π₯} Γ ((π§ β {π€ β π΄ β£ π€ # π₯} β¦ (((πΉβπ§) β (πΉβπ₯)) / (π§ β π₯))) limβ π₯)) β (((intβπ)βπ΄) Γ β) |
59 | 58 | a1i 9 |
. . . 4
β’ ((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β βͺ
π₯ β ((intβπ)βπ΄)({π₯} Γ ((π§ β {π€ β π΄ β£ π€ # π₯} β¦ (((πΉβπ§) β (πΉβπ₯)) / (π§ β π₯))) limβ π₯)) β (((intβπ)βπ΄) Γ β)) |
60 | 50, 59 | ssexd 4143 |
. . 3
β’ ((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β βͺ
π₯ β ((intβπ)βπ΄)({π₯} Γ ((π§ β {π€ β π΄ β£ π€ # π₯} β¦ (((πΉβπ§) β (πΉβπ₯)) / (π§ β π₯))) limβ π₯)) β V) |
61 | 2, 25, 27, 31, 36, 60 | ovmpodx 6000 |
. 2
β’ ((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β (π D πΉ) = βͺ
π₯ β ((intβπ)βπ΄)({π₯} Γ ((π§ β {π€ β π΄ β£ π€ # π₯} β¦ (((πΉβπ§) β (πΉβπ₯)) / (π§ β π₯))) limβ π₯))) |
62 | 61, 59 | eqsstrd 3191 |
. 2
β’ ((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β (π D πΉ) β (((intβπ)βπ΄) Γ β)) |
63 | 61, 62 | jca 306 |
1
β’ ((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β ((π D πΉ) = βͺ
π₯ β ((intβπ)βπ΄)({π₯} Γ ((π§ β {π€ β π΄ β£ π€ # π₯} β¦ (((πΉβπ§) β (πΉβπ₯)) / (π§ β π₯))) limβ π₯)) β§ (π D πΉ) β (((intβπ)βπ΄) Γ β))) |