Step | Hyp | Ref
| Expression |
1 | | df-dvap 13266 |
. . . 4
⊢ D =
(𝑠 ∈ 𝒫
ℂ, 𝑓 ∈ (ℂ
↑pm 𝑠) ↦ ∪
𝑥 ∈
((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
2 | 1 | a1i 9 |
. . 3
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm
𝑠) ↦ ∪ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)))) |
3 | | dvval.k |
. . . . . . . 8
⊢ 𝐾 = (MetOpen‘(abs ∘
− )) |
4 | 3 | oveq1i 5852 |
. . . . . . 7
⊢ (𝐾 ↾t 𝑠) = ((MetOpen‘(abs ∘
− )) ↾t 𝑠) |
5 | | simprl 521 |
. . . . . . . . 9
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → 𝑠 = 𝑆) |
6 | 5 | oveq2d 5858 |
. . . . . . . 8
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → (𝐾 ↾t 𝑠) = (𝐾 ↾t 𝑆)) |
7 | | dvval.t |
. . . . . . . 8
⊢ 𝑇 = (𝐾 ↾t 𝑆) |
8 | 6, 7 | eqtr4di 2217 |
. . . . . . 7
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → (𝐾 ↾t 𝑠) = 𝑇) |
9 | 4, 8 | eqtr3id 2213 |
. . . . . 6
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → ((MetOpen‘(abs ∘
− )) ↾t 𝑠) = 𝑇) |
10 | 9 | fveq2d 5490 |
. . . . 5
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → (int‘((MetOpen‘(abs
∘ − )) ↾t 𝑠)) = (int‘𝑇)) |
11 | | simprr 522 |
. . . . . . 7
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → 𝑓 = 𝐹) |
12 | 11 | dmeqd 4806 |
. . . . . 6
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → dom 𝑓 = dom 𝐹) |
13 | | simpl2 991 |
. . . . . . 7
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → 𝐹:𝐴⟶ℂ) |
14 | 13 | fdmd 5344 |
. . . . . 6
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → dom 𝐹 = 𝐴) |
15 | 12, 14 | eqtrd 2198 |
. . . . 5
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → dom 𝑓 = 𝐴) |
16 | 10, 15 | fveq12d 5493 |
. . . 4
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑠))‘dom 𝑓) = ((int‘𝑇)‘𝐴)) |
17 | 15 | rabeqdv 2720 |
. . . . . . 7
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} = {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥}) |
18 | 11 | fveq1d 5488 |
. . . . . . . . 9
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → (𝑓‘𝑧) = (𝐹‘𝑧)) |
19 | 11 | fveq1d 5488 |
. . . . . . . . 9
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → (𝑓‘𝑥) = (𝐹‘𝑥)) |
20 | 18, 19 | oveq12d 5860 |
. . . . . . . 8
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → ((𝑓‘𝑧) − (𝑓‘𝑥)) = ((𝐹‘𝑧) − (𝐹‘𝑥))) |
21 | 20 | oveq1d 5857 |
. . . . . . 7
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥)) = (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) |
22 | 17, 21 | mpteq12dv 4064 |
. . . . . 6
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → (𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) = (𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)))) |
23 | 22 | oveq1d 5857 |
. . . . 5
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥) = ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) |
24 | 23 | xpeq2d 4628 |
. . . 4
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) = ({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
25 | 16, 24 | iuneq12d 3890 |
. . 3
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ (𝑠 = 𝑆 ∧ 𝑓 = 𝐹)) → ∪ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) = ∪
𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
26 | | simpr 109 |
. . . 4
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆) |
27 | 26 | oveq2d 5858 |
. . 3
⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝑠 = 𝑆) → (ℂ ↑pm
𝑠) = (ℂ
↑pm 𝑆)) |
28 | | simp1 987 |
. . . 4
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → 𝑆 ⊆ ℂ) |
29 | | cnex 7877 |
. . . . 5
⊢ ℂ
∈ V |
30 | 29 | elpw2 4136 |
. . . 4
⊢ (𝑆 ∈ 𝒫 ℂ ↔
𝑆 ⊆
ℂ) |
31 | 28, 30 | sylibr 133 |
. . 3
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → 𝑆 ∈ 𝒫 ℂ) |
32 | 29 | a1i 9 |
. . . 4
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → ℂ ∈ V) |
33 | | simp2 988 |
. . . 4
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → 𝐹:𝐴⟶ℂ) |
34 | | simp3 989 |
. . . 4
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → 𝐴 ⊆ 𝑆) |
35 | | elpm2r 6632 |
. . . 4
⊢
(((ℂ ∈ V ∧ 𝑆 ∈ 𝒫 ℂ) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆)) → 𝐹 ∈ (ℂ ↑pm
𝑆)) |
36 | 32, 31, 33, 34, 35 | syl22anc 1229 |
. . 3
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → 𝐹 ∈ (ℂ ↑pm
𝑆)) |
37 | 3 | cntoptopon 13172 |
. . . . . . . . 9
⊢ 𝐾 ∈
(TopOn‘ℂ) |
38 | | resttopon 12811 |
. . . . . . . . 9
⊢ ((𝐾 ∈ (TopOn‘ℂ)
∧ 𝑆 ⊆ ℂ)
→ (𝐾
↾t 𝑆)
∈ (TopOn‘𝑆)) |
39 | 37, 28, 38 | sylancr 411 |
. . . . . . . 8
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) |
40 | 7, 39 | eqeltrid 2253 |
. . . . . . 7
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → 𝑇 ∈ (TopOn‘𝑆)) |
41 | | topontop 12652 |
. . . . . . 7
⊢ (𝑇 ∈ (TopOn‘𝑆) → 𝑇 ∈ Top) |
42 | 40, 41 | syl 14 |
. . . . . 6
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → 𝑇 ∈ Top) |
43 | | toponuni 12653 |
. . . . . . . 8
⊢ (𝑇 ∈ (TopOn‘𝑆) → 𝑆 = ∪ 𝑇) |
44 | 40, 43 | syl 14 |
. . . . . . 7
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → 𝑆 = ∪ 𝑇) |
45 | 34, 44 | sseqtrd 3180 |
. . . . . 6
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → 𝐴 ⊆ ∪ 𝑇) |
46 | | eqid 2165 |
. . . . . . 7
⊢ ∪ 𝑇 =
∪ 𝑇 |
47 | 46 | ntropn 12757 |
. . . . . 6
⊢ ((𝑇 ∈ Top ∧ 𝐴 ⊆ ∪ 𝑇)
→ ((int‘𝑇)‘𝐴) ∈ 𝑇) |
48 | 42, 45, 47 | syl2anc 409 |
. . . . 5
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → ((int‘𝑇)‘𝐴) ∈ 𝑇) |
49 | | xpexg 4718 |
. . . . 5
⊢
((((int‘𝑇)‘𝐴) ∈ 𝑇 ∧ ℂ ∈ V) →
(((int‘𝑇)‘𝐴) × ℂ) ∈
V) |
50 | 48, 32, 49 | syl2anc 409 |
. . . 4
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → (((int‘𝑇)‘𝐴) × ℂ) ∈
V) |
51 | | limccl 13268 |
. . . . . . . . 9
⊢ ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥) ⊆ ℂ |
52 | | xpss2 4715 |
. . . . . . . . 9
⊢ (((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥) ⊆ ℂ → ({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ ({𝑥} × ℂ)) |
53 | 51, 52 | ax-mp 5 |
. . . . . . . 8
⊢ ({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ ({𝑥} × ℂ) |
54 | 53 | rgenw 2521 |
. . . . . . 7
⊢
∀𝑥 ∈
((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ ({𝑥} × ℂ) |
55 | | ss2iun 3881 |
. . . . . . 7
⊢
(∀𝑥 ∈
((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ ({𝑥} × ℂ) → ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ℂ)) |
56 | 54, 55 | ax-mp 5 |
. . . . . 6
⊢ ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ℂ) |
57 | | iunxpconst 4664 |
. . . . . 6
⊢ ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ℂ) = (((int‘𝑇)‘𝐴) × ℂ) |
58 | 56, 57 | sseqtri 3176 |
. . . . 5
⊢ ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ (((int‘𝑇)‘𝐴) × ℂ) |
59 | 58 | a1i 9 |
. . . 4
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → ∪
𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ (((int‘𝑇)‘𝐴) × ℂ)) |
60 | 50, 59 | ssexd 4122 |
. . 3
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → ∪
𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∈ V) |
61 | 2, 25, 27, 31, 36, 60 | ovmpodx 5968 |
. 2
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → (𝑆 D 𝐹) = ∪
𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
62 | 61, 59 | eqsstrd 3178 |
. 2
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → (𝑆 D 𝐹) ⊆ (((int‘𝑇)‘𝐴) × ℂ)) |
63 | 61, 62 | jca 304 |
1
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → ((𝑆 D 𝐹) = ∪
𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝑇)‘𝐴) × ℂ))) |