Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvfvalap GIF version

Theorem dvfvalap 12856
 Description: Value and set bounds on the derivative operator. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
Hypotheses
Ref Expression
dvval.t 𝑇 = (𝐾t 𝑆)
dvval.k 𝐾 = (MetOpen‘(abs ∘ − ))
Assertion
Ref Expression
dvfvalap ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → ((𝑆 D 𝐹) = 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝑇)‘𝐴) × ℂ)))
Distinct variable groups:   𝑤,𝐴,𝑥,𝑧   𝑤,𝐹,𝑥,𝑧   𝑤,𝑆,𝑥,𝑧   𝑥,𝑇
Allowed substitution hints:   𝑇(𝑧,𝑤)   𝐾(𝑥,𝑧,𝑤)

Proof of Theorem dvfvalap
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvap 12832 . . . 4 D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)))
21a1i 9 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥))))
3 dvval.k . . . . . . . 8 𝐾 = (MetOpen‘(abs ∘ − ))
43oveq1i 5791 . . . . . . 7 (𝐾t 𝑠) = ((MetOpen‘(abs ∘ − )) ↾t 𝑠)
5 simprl 521 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → 𝑠 = 𝑆)
65oveq2d 5797 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝐾t 𝑠) = (𝐾t 𝑆))
7 dvval.t . . . . . . . 8 𝑇 = (𝐾t 𝑆)
86, 7eqtr4di 2191 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝐾t 𝑠) = 𝑇)
94, 8syl5eqr 2187 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → ((MetOpen‘(abs ∘ − )) ↾t 𝑠) = 𝑇)
109fveq2d 5432 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠)) = (int‘𝑇))
11 simprr 522 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → 𝑓 = 𝐹)
1211dmeqd 4748 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → dom 𝑓 = dom 𝐹)
13 simpl2 986 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → 𝐹:𝐴⟶ℂ)
1413fdmd 5286 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → dom 𝐹 = 𝐴)
1512, 14eqtrd 2173 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → dom 𝑓 = 𝐴)
1610, 15fveq12d 5435 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓) = ((int‘𝑇)‘𝐴))
1715rabeqdv 2683 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → {𝑤 ∈ dom 𝑓𝑤 # 𝑥} = {𝑤𝐴𝑤 # 𝑥})
1811fveq1d 5430 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝑓𝑧) = (𝐹𝑧))
1911fveq1d 5430 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝑓𝑥) = (𝐹𝑥))
2018, 19oveq12d 5799 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → ((𝑓𝑧) − (𝑓𝑥)) = ((𝐹𝑧) − (𝐹𝑥)))
2120oveq1d 5796 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥)) = (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
2217, 21mpteq12dv 4017 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) = (𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))))
2322oveq1d 5796 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥) = ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
2423xpeq2d 4570 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)) = ({𝑥} × ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
2516, 24iuneq12d 3844 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)) = 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
26 simpr 109 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆)
2726oveq2d 5797 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝑠 = 𝑆) → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆))
28 simp1 982 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝑆 ⊆ ℂ)
29 cnex 7767 . . . . 5 ℂ ∈ V
3029elpw2 4089 . . . 4 (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ)
3128, 30sylibr 133 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝑆 ∈ 𝒫 ℂ)
3229a1i 9 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → ℂ ∈ V)
33 simp2 983 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝐹:𝐴⟶ℂ)
34 simp3 984 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝐴𝑆)
35 elpm2r 6567 . . . 4 (((ℂ ∈ V ∧ 𝑆 ∈ 𝒫 ℂ) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
3632, 31, 33, 34, 35syl22anc 1218 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝐹 ∈ (ℂ ↑pm 𝑆))
373cntoptopon 12738 . . . . . . . . 9 𝐾 ∈ (TopOn‘ℂ)
38 resttopon 12377 . . . . . . . . 9 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
3937, 28, 38sylancr 411 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
407, 39eqeltrid 2227 . . . . . . 7 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝑇 ∈ (TopOn‘𝑆))
41 topontop 12218 . . . . . . 7 (𝑇 ∈ (TopOn‘𝑆) → 𝑇 ∈ Top)
4240, 41syl 14 . . . . . 6 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝑇 ∈ Top)
43 toponuni 12219 . . . . . . . 8 (𝑇 ∈ (TopOn‘𝑆) → 𝑆 = 𝑇)
4440, 43syl 14 . . . . . . 7 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝑆 = 𝑇)
4534, 44sseqtrd 3139 . . . . . 6 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝐴 𝑇)
46 eqid 2140 . . . . . . 7 𝑇 = 𝑇
4746ntropn 12323 . . . . . 6 ((𝑇 ∈ Top ∧ 𝐴 𝑇) → ((int‘𝑇)‘𝐴) ∈ 𝑇)
4842, 45, 47syl2anc 409 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → ((int‘𝑇)‘𝐴) ∈ 𝑇)
49 xpexg 4660 . . . . 5 ((((int‘𝑇)‘𝐴) ∈ 𝑇 ∧ ℂ ∈ V) → (((int‘𝑇)‘𝐴) × ℂ) ∈ V)
5048, 32, 49syl2anc 409 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → (((int‘𝑇)‘𝐴) × ℂ) ∈ V)
51 limccl 12834 . . . . . . . . 9 ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥) ⊆ ℂ
52 xpss2 4657 . . . . . . . . 9 (((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥) ⊆ ℂ → ({𝑥} × ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ⊆ ({𝑥} × ℂ))
5351, 52ax-mp 5 . . . . . . . 8 ({𝑥} × ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ⊆ ({𝑥} × ℂ)
5453rgenw 2490 . . . . . . 7 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ⊆ ({𝑥} × ℂ)
55 ss2iun 3835 . . . . . . 7 (∀𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ⊆ ({𝑥} × ℂ) → 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ⊆ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ℂ))
5654, 55ax-mp 5 . . . . . 6 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ⊆ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ℂ)
57 iunxpconst 4606 . . . . . 6 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ℂ) = (((int‘𝑇)‘𝐴) × ℂ)
5856, 57sseqtri 3135 . . . . 5 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ⊆ (((int‘𝑇)‘𝐴) × ℂ)
5958a1i 9 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ⊆ (((int‘𝑇)‘𝐴) × ℂ))
6050, 59ssexd 4075 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∈ V)
612, 25, 27, 31, 36, 60ovmpodx 5904 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → (𝑆 D 𝐹) = 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
6261, 59eqsstrd 3137 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → (𝑆 D 𝐹) ⊆ (((int‘𝑇)‘𝐴) × ℂ))
6361, 62jca 304 1 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → ((𝑆 D 𝐹) = 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝑇)‘𝐴) × ℂ)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∧ w3a 963   = wceq 1332   ∈ wcel 1481  ∀wral 2417  {crab 2421  Vcvv 2689   ⊆ wss 3075  𝒫 cpw 3514  {csn 3531  ∪ cuni 3743  ∪ ciun 3820   class class class wbr 3936   ↦ cmpt 3996   × cxp 4544  dom cdm 4546   ∘ ccom 4550  ⟶wf 5126  ‘cfv 5130  (class class class)co 5781   ∈ cmpo 5783   ↑pm cpm 6550  ℂcc 7641   − cmin 7956   # cap 8366   / cdiv 8455  abscabs 10800   ↾t crest 12157  MetOpencmopn 12191  Topctop 12201  TopOnctopon 12214  intcnt 12299   limℂ climc 12829   D cdv 12830 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-iinf 4509  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-precex 7753  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759  ax-pre-mulgt0 7760  ax-pre-mulext 7761  ax-arch 7762  ax-caucvg 7763 This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-if 3479  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-tr 4034  df-id 4222  df-po 4225  df-iso 4226  df-iord 4295  df-on 4297  df-ilim 4298  df-suc 4300  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-isom 5139  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-recs 6209  df-frec 6295  df-map 6551  df-pm 6552  df-sup 6878  df-inf 6879  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-reap 8360  df-ap 8367  df-div 8456  df-inn 8744  df-2 8802  df-3 8803  df-4 8804  df-n0 9001  df-z 9078  df-uz 9350  df-q 9438  df-rp 9470  df-xneg 9588  df-xadd 9589  df-seqfrec 10249  df-exp 10323  df-cj 10645  df-re 10646  df-im 10647  df-rsqrt 10801  df-abs 10802  df-rest 12159  df-topgen 12178  df-psmet 12193  df-xmet 12194  df-met 12195  df-bl 12196  df-mopn 12197  df-top 12202  df-topon 12215  df-bases 12247  df-ntr 12302  df-limced 12831  df-dvap 12832 This theorem is referenced by:  eldvap  12857  dvbssntrcntop  12859
 Copyright terms: Public domain W3C validator