ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldvg GIF version

Theorem reldvg 14915
Description: The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 25-Jun-2023.)
Assertion
Ref Expression
reldvg ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D 𝐹))

Proof of Theorem reldvg
Dummy variables 𝑓 𝑠 𝑤 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 ⊆ ℂ)
2 cnex 8003 . . . . . 6 ℂ ∈ V
32elpw2 4190 . . . . 5 (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ)
41, 3sylibr 134 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 ∈ 𝒫 ℂ)
5 simpr 110 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
6 eqid 2196 . . . . . . . . . 10 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
76cntoptop 14769 . . . . . . . . 9 (MetOpen‘(abs ∘ − )) ∈ Top
87a1i 9 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (MetOpen‘(abs ∘ − )) ∈ Top)
94elexd 2776 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 ∈ V)
10 resttop 14406 . . . . . . . 8 (((MetOpen‘(abs ∘ − )) ∈ Top ∧ 𝑆 ∈ V) → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top)
118, 9, 10syl2anc 411 . . . . . . 7 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top)
12 elpmi 6726 . . . . . . . . . 10 (𝐹 ∈ (ℂ ↑pm 𝑆) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆))
1312simprd 114 . . . . . . . . 9 (𝐹 ∈ (ℂ ↑pm 𝑆) → dom 𝐹𝑆)
1413adantl 277 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → dom 𝐹𝑆)
156cntoptopon 14768 . . . . . . . . . . 11 (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)
1615toponunii 14253 . . . . . . . . . 10 ℂ = (MetOpen‘(abs ∘ − ))
1716restuni 14408 . . . . . . . . 9 (((MetOpen‘(abs ∘ − )) ∈ Top ∧ 𝑆 ⊆ ℂ) → 𝑆 = ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
188, 1, 17syl2anc 411 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 = ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
1914, 18sseqtrd 3221 . . . . . . 7 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → dom 𝐹 ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
20 eqid 2196 . . . . . . . 8 ((MetOpen‘(abs ∘ − )) ↾t 𝑆) = ((MetOpen‘(abs ∘ − )) ↾t 𝑆)
2120ntrss3 14359 . . . . . . 7 ((((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top ∧ dom 𝐹 ((MetOpen‘(abs ∘ − )) ↾t 𝑆)) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
2211, 19, 21syl2anc 411 . . . . . 6 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
23 uniexg 4474 . . . . . . 7 (((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ V)
24 elpw2g 4189 . . . . . . 7 ( ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ V → (((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∈ 𝒫 ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ↔ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ ((MetOpen‘(abs ∘ − )) ↾t 𝑆)))
2511, 23, 243syl 17 . . . . . 6 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∈ 𝒫 ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ↔ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ ((MetOpen‘(abs ∘ − )) ↾t 𝑆)))
2622, 25mpbird 167 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∈ 𝒫 ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
27 vex 2766 . . . . . . . . 9 𝑥 ∈ V
2827snex 4218 . . . . . . . 8 {𝑥} ∈ V
29 limccl 14895 . . . . . . . . 9 ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥) ⊆ ℂ
302, 29ssexi 4171 . . . . . . . 8 ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥) ∈ V
3128, 30xpex 4778 . . . . . . 7 ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∈ V
3231rgenw 2552 . . . . . 6 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∈ V
3332a1i 9 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ∀𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∈ V)
34 iunexg 6176 . . . . 5 ((((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∈ 𝒫 ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∧ ∀𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∈ V) → 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∈ V)
3526, 33, 34syl2anc 411 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∈ V)
36 simpl 109 . . . . . . . . 9 ((𝑠 = 𝑆𝑓 = 𝐹) → 𝑠 = 𝑆)
3736oveq2d 5938 . . . . . . . 8 ((𝑠 = 𝑆𝑓 = 𝐹) → ((MetOpen‘(abs ∘ − )) ↾t 𝑠) = ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
3837fveq2d 5562 . . . . . . 7 ((𝑠 = 𝑆𝑓 = 𝐹) → (int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠)) = (int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆)))
39 dmeq 4866 . . . . . . . 8 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
4039adantl 277 . . . . . . 7 ((𝑠 = 𝑆𝑓 = 𝐹) → dom 𝑓 = dom 𝐹)
4138, 40fveq12d 5565 . . . . . 6 ((𝑠 = 𝑆𝑓 = 𝐹) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓) = ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹))
4240rabeqdv 2757 . . . . . . . . 9 ((𝑠 = 𝑆𝑓 = 𝐹) → {𝑤 ∈ dom 𝑓𝑤 # 𝑥} = {𝑤 ∈ dom 𝐹𝑤 # 𝑥})
43 fveq1 5557 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓𝑧) = (𝐹𝑧))
4443adantl 277 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑓 = 𝐹) → (𝑓𝑧) = (𝐹𝑧))
45 fveq1 5557 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
4645adantl 277 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑓 = 𝐹) → (𝑓𝑥) = (𝐹𝑥))
4744, 46oveq12d 5940 . . . . . . . . . 10 ((𝑠 = 𝑆𝑓 = 𝐹) → ((𝑓𝑧) − (𝑓𝑥)) = ((𝐹𝑧) − (𝐹𝑥)))
4847oveq1d 5937 . . . . . . . . 9 ((𝑠 = 𝑆𝑓 = 𝐹) → (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥)) = (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
4942, 48mpteq12dv 4115 . . . . . . . 8 ((𝑠 = 𝑆𝑓 = 𝐹) → (𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) = (𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))))
5049oveq1d 5937 . . . . . . 7 ((𝑠 = 𝑆𝑓 = 𝐹) → ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥) = ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
5150xpeq2d 4687 . . . . . 6 ((𝑠 = 𝑆𝑓 = 𝐹) → ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)) = ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
5241, 51iuneq12d 3940 . . . . 5 ((𝑠 = 𝑆𝑓 = 𝐹) → 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)) = 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
53 oveq2 5930 . . . . 5 (𝑠 = 𝑆 → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆))
54 df-dvap 14893 . . . . 5 D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)))
5552, 53, 54ovmpox 6051 . . . 4 ((𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∈ V) → (𝑆 D 𝐹) = 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
564, 5, 35, 55syl3anc 1249 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹) = 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
57 relxp 4772 . . . . . 6 Rel ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
5857rgenw 2552 . . . . 5 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)Rel ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
59 reliun 4784 . . . . 5 (Rel 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ ∀𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)Rel ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
6058, 59mpbir 146 . . . 4 Rel 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
61 df-rel 4670 . . . 4 (Rel 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ⊆ (V × V))
6260, 61mpbi 145 . . 3 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ⊆ (V × V)
6356, 62eqsstrdi 3235 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹) ⊆ (V × V))
64 df-rel 4670 . 2 (Rel (𝑆 D 𝐹) ↔ (𝑆 D 𝐹) ⊆ (V × V))
6563, 64sylibr 134 1 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  {crab 2479  Vcvv 2763  wss 3157  𝒫 cpw 3605  {csn 3622   cuni 3839   ciun 3916   class class class wbr 4033  cmpt 4094   × cxp 4661  dom cdm 4663  ccom 4667  Rel wrel 4668  wf 5254  cfv 5258  (class class class)co 5922  pm cpm 6708  cc 7877  cmin 8197   # cap 8608   / cdiv 8699  abscabs 11162  t crest 12910  MetOpencmopn 14097  Topctop 14233  intcnt 14329   lim climc 14890   D cdv 14891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-map 6709  df-pm 6710  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-rest 12912  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-top 14234  df-topon 14247  df-bases 14279  df-ntr 14332  df-limced 14892  df-dvap 14893
This theorem is referenced by:  dvfgg  14924  dvidlemap  14927  dvidrelem  14928  dvidsslem  14929  dvmulxxbr  14938  dviaddf  14941  dvimulf  14942  dvcoapbr  14943
  Copyright terms: Public domain W3C validator