ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldvg GIF version

Theorem reldvg 14625
Description: The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 25-Jun-2023.)
Assertion
Ref Expression
reldvg ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D 𝐹))

Proof of Theorem reldvg
Dummy variables 𝑓 𝑠 𝑤 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 ⊆ ℂ)
2 cnex 7966 . . . . . 6 ℂ ∈ V
32elpw2 4175 . . . . 5 (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ)
41, 3sylibr 134 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 ∈ 𝒫 ℂ)
5 simpr 110 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
6 eqid 2189 . . . . . . . . . 10 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
76cntoptop 14510 . . . . . . . . 9 (MetOpen‘(abs ∘ − )) ∈ Top
87a1i 9 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (MetOpen‘(abs ∘ − )) ∈ Top)
94elexd 2765 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 ∈ V)
10 resttop 14147 . . . . . . . 8 (((MetOpen‘(abs ∘ − )) ∈ Top ∧ 𝑆 ∈ V) → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top)
118, 9, 10syl2anc 411 . . . . . . 7 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top)
12 elpmi 6694 . . . . . . . . . 10 (𝐹 ∈ (ℂ ↑pm 𝑆) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆))
1312simprd 114 . . . . . . . . 9 (𝐹 ∈ (ℂ ↑pm 𝑆) → dom 𝐹𝑆)
1413adantl 277 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → dom 𝐹𝑆)
156cntoptopon 14509 . . . . . . . . . . 11 (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)
1615toponunii 13994 . . . . . . . . . 10 ℂ = (MetOpen‘(abs ∘ − ))
1716restuni 14149 . . . . . . . . 9 (((MetOpen‘(abs ∘ − )) ∈ Top ∧ 𝑆 ⊆ ℂ) → 𝑆 = ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
188, 1, 17syl2anc 411 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 = ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
1914, 18sseqtrd 3208 . . . . . . 7 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → dom 𝐹 ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
20 eqid 2189 . . . . . . . 8 ((MetOpen‘(abs ∘ − )) ↾t 𝑆) = ((MetOpen‘(abs ∘ − )) ↾t 𝑆)
2120ntrss3 14100 . . . . . . 7 ((((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top ∧ dom 𝐹 ((MetOpen‘(abs ∘ − )) ↾t 𝑆)) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
2211, 19, 21syl2anc 411 . . . . . 6 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
23 uniexg 4457 . . . . . . 7 (((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ V)
24 elpw2g 4174 . . . . . . 7 ( ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ V → (((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∈ 𝒫 ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ↔ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ ((MetOpen‘(abs ∘ − )) ↾t 𝑆)))
2511, 23, 243syl 17 . . . . . 6 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∈ 𝒫 ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ↔ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ ((MetOpen‘(abs ∘ − )) ↾t 𝑆)))
2622, 25mpbird 167 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∈ 𝒫 ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
27 vex 2755 . . . . . . . . 9 𝑥 ∈ V
2827snex 4203 . . . . . . . 8 {𝑥} ∈ V
29 limccl 14605 . . . . . . . . 9 ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥) ⊆ ℂ
302, 29ssexi 4156 . . . . . . . 8 ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥) ∈ V
3128, 30xpex 4759 . . . . . . 7 ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∈ V
3231rgenw 2545 . . . . . 6 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∈ V
3332a1i 9 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ∀𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∈ V)
34 iunexg 6145 . . . . 5 ((((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∈ 𝒫 ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∧ ∀𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∈ V) → 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∈ V)
3526, 33, 34syl2anc 411 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∈ V)
36 simpl 109 . . . . . . . . 9 ((𝑠 = 𝑆𝑓 = 𝐹) → 𝑠 = 𝑆)
3736oveq2d 5913 . . . . . . . 8 ((𝑠 = 𝑆𝑓 = 𝐹) → ((MetOpen‘(abs ∘ − )) ↾t 𝑠) = ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
3837fveq2d 5538 . . . . . . 7 ((𝑠 = 𝑆𝑓 = 𝐹) → (int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠)) = (int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆)))
39 dmeq 4845 . . . . . . . 8 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
4039adantl 277 . . . . . . 7 ((𝑠 = 𝑆𝑓 = 𝐹) → dom 𝑓 = dom 𝐹)
4138, 40fveq12d 5541 . . . . . 6 ((𝑠 = 𝑆𝑓 = 𝐹) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓) = ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹))
4240rabeqdv 2746 . . . . . . . . 9 ((𝑠 = 𝑆𝑓 = 𝐹) → {𝑤 ∈ dom 𝑓𝑤 # 𝑥} = {𝑤 ∈ dom 𝐹𝑤 # 𝑥})
43 fveq1 5533 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓𝑧) = (𝐹𝑧))
4443adantl 277 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑓 = 𝐹) → (𝑓𝑧) = (𝐹𝑧))
45 fveq1 5533 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
4645adantl 277 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑓 = 𝐹) → (𝑓𝑥) = (𝐹𝑥))
4744, 46oveq12d 5915 . . . . . . . . . 10 ((𝑠 = 𝑆𝑓 = 𝐹) → ((𝑓𝑧) − (𝑓𝑥)) = ((𝐹𝑧) − (𝐹𝑥)))
4847oveq1d 5912 . . . . . . . . 9 ((𝑠 = 𝑆𝑓 = 𝐹) → (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥)) = (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
4942, 48mpteq12dv 4100 . . . . . . . 8 ((𝑠 = 𝑆𝑓 = 𝐹) → (𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) = (𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))))
5049oveq1d 5912 . . . . . . 7 ((𝑠 = 𝑆𝑓 = 𝐹) → ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥) = ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
5150xpeq2d 4668 . . . . . 6 ((𝑠 = 𝑆𝑓 = 𝐹) → ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)) = ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
5241, 51iuneq12d 3925 . . . . 5 ((𝑠 = 𝑆𝑓 = 𝐹) → 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)) = 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
53 oveq2 5905 . . . . 5 (𝑠 = 𝑆 → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆))
54 df-dvap 14603 . . . . 5 D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)))
5552, 53, 54ovmpox 6026 . . . 4 ((𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∈ V) → (𝑆 D 𝐹) = 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
564, 5, 35, 55syl3anc 1249 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹) = 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
57 relxp 4753 . . . . . 6 Rel ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
5857rgenw 2545 . . . . 5 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)Rel ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
59 reliun 4765 . . . . 5 (Rel 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ ∀𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)Rel ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
6058, 59mpbir 146 . . . 4 Rel 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
61 df-rel 4651 . . . 4 (Rel 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ⊆ (V × V))
6260, 61mpbi 145 . . 3 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ⊆ (V × V)
6356, 62eqsstrdi 3222 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹) ⊆ (V × V))
64 df-rel 4651 . 2 (Rel (𝑆 D 𝐹) ↔ (𝑆 D 𝐹) ⊆ (V × V))
6563, 64sylibr 134 1 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2160  wral 2468  {crab 2472  Vcvv 2752  wss 3144  𝒫 cpw 3590  {csn 3607   cuni 3824   ciun 3901   class class class wbr 4018  cmpt 4079   × cxp 4642  dom cdm 4644  ccom 4648  Rel wrel 4649  wf 5231  cfv 5235  (class class class)co 5897  pm cpm 6676  cc 7840  cmin 8159   # cap 8569   / cdiv 8660  abscabs 11041  t crest 12747  MetOpencmopn 13871  Topctop 13974  intcnt 14070   lim climc 14600   D cdv 14601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-map 6677  df-pm 6678  df-sup 7014  df-inf 7015  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-xneg 9804  df-xadd 9805  df-seqfrec 10479  df-exp 10554  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-rest 12749  df-topgen 12768  df-psmet 13873  df-xmet 13874  df-met 13875  df-bl 13876  df-mopn 13877  df-top 13975  df-topon 13988  df-bases 14020  df-ntr 14073  df-limced 14602  df-dvap 14603
This theorem is referenced by:  dvfgg  14634  dvidlemap  14637  dvmulxxbr  14643  dviaddf  14646  dvimulf  14647  dvcoapbr  14648
  Copyright terms: Public domain W3C validator