ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldvg GIF version

Theorem reldvg 12597
Description: The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 25-Jun-2023.)
Assertion
Ref Expression
reldvg ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D 𝐹))

Proof of Theorem reldvg
Dummy variables 𝑓 𝑠 𝑤 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 ⊆ ℂ)
2 cnex 7662 . . . . . 6 ℂ ∈ V
32elpw2 4040 . . . . 5 (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ)
41, 3sylibr 133 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 ∈ 𝒫 ℂ)
5 simpr 109 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
6 eqid 2113 . . . . . . . . . 10 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
76cntoptop 12516 . . . . . . . . 9 (MetOpen‘(abs ∘ − )) ∈ Top
87a1i 9 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (MetOpen‘(abs ∘ − )) ∈ Top)
94elexd 2668 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 ∈ V)
10 resttop 12176 . . . . . . . 8 (((MetOpen‘(abs ∘ − )) ∈ Top ∧ 𝑆 ∈ V) → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top)
118, 9, 10syl2anc 406 . . . . . . 7 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top)
12 elpmi 6513 . . . . . . . . . 10 (𝐹 ∈ (ℂ ↑pm 𝑆) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆))
1312simprd 113 . . . . . . . . 9 (𝐹 ∈ (ℂ ↑pm 𝑆) → dom 𝐹𝑆)
1413adantl 273 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → dom 𝐹𝑆)
156cntoptopon 12515 . . . . . . . . . . 11 (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)
1615toponunii 12021 . . . . . . . . . 10 ℂ = (MetOpen‘(abs ∘ − ))
1716restuni 12178 . . . . . . . . 9 (((MetOpen‘(abs ∘ − )) ∈ Top ∧ 𝑆 ⊆ ℂ) → 𝑆 = ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
188, 1, 17syl2anc 406 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 = ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
1914, 18sseqtrd 3099 . . . . . . 7 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → dom 𝐹 ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
20 eqid 2113 . . . . . . . 8 ((MetOpen‘(abs ∘ − )) ↾t 𝑆) = ((MetOpen‘(abs ∘ − )) ↾t 𝑆)
2120ntrss3 12129 . . . . . . 7 ((((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top ∧ dom 𝐹 ((MetOpen‘(abs ∘ − )) ↾t 𝑆)) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
2211, 19, 21syl2anc 406 . . . . . 6 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
23 uniexg 4319 . . . . . . 7 (((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ V)
24 elpw2g 4039 . . . . . . 7 ( ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ V → (((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∈ 𝒫 ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ↔ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ ((MetOpen‘(abs ∘ − )) ↾t 𝑆)))
2511, 23, 243syl 17 . . . . . 6 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∈ 𝒫 ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ↔ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ ((MetOpen‘(abs ∘ − )) ↾t 𝑆)))
2622, 25mpbird 166 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∈ 𝒫 ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
27 vex 2658 . . . . . . . . 9 𝑥 ∈ V
2827snex 4067 . . . . . . . 8 {𝑥} ∈ V
29 limccl 12578 . . . . . . . . 9 ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥) ⊆ ℂ
302, 29ssexi 4024 . . . . . . . 8 ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥) ∈ V
3128, 30xpex 4612 . . . . . . 7 ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∈ V
3231rgenw 2459 . . . . . 6 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∈ V
3332a1i 9 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ∀𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∈ V)
34 iunexg 5969 . . . . 5 ((((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∈ 𝒫 ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∧ ∀𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∈ V) → 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∈ V)
3526, 33, 34syl2anc 406 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∈ V)
36 simpl 108 . . . . . . . . 9 ((𝑠 = 𝑆𝑓 = 𝐹) → 𝑠 = 𝑆)
3736oveq2d 5742 . . . . . . . 8 ((𝑠 = 𝑆𝑓 = 𝐹) → ((MetOpen‘(abs ∘ − )) ↾t 𝑠) = ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
3837fveq2d 5377 . . . . . . 7 ((𝑠 = 𝑆𝑓 = 𝐹) → (int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠)) = (int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆)))
39 dmeq 4697 . . . . . . . 8 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
4039adantl 273 . . . . . . 7 ((𝑠 = 𝑆𝑓 = 𝐹) → dom 𝑓 = dom 𝐹)
4138, 40fveq12d 5380 . . . . . 6 ((𝑠 = 𝑆𝑓 = 𝐹) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓) = ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹))
4240rabeqdv 2649 . . . . . . . . 9 ((𝑠 = 𝑆𝑓 = 𝐹) → {𝑤 ∈ dom 𝑓𝑤 # 𝑥} = {𝑤 ∈ dom 𝐹𝑤 # 𝑥})
43 fveq1 5372 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓𝑧) = (𝐹𝑧))
4443adantl 273 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑓 = 𝐹) → (𝑓𝑧) = (𝐹𝑧))
45 fveq1 5372 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
4645adantl 273 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑓 = 𝐹) → (𝑓𝑥) = (𝐹𝑥))
4744, 46oveq12d 5744 . . . . . . . . . 10 ((𝑠 = 𝑆𝑓 = 𝐹) → ((𝑓𝑧) − (𝑓𝑥)) = ((𝐹𝑧) − (𝐹𝑥)))
4847oveq1d 5741 . . . . . . . . 9 ((𝑠 = 𝑆𝑓 = 𝐹) → (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥)) = (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
4942, 48mpteq12dv 3968 . . . . . . . 8 ((𝑠 = 𝑆𝑓 = 𝐹) → (𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) = (𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))))
5049oveq1d 5741 . . . . . . 7 ((𝑠 = 𝑆𝑓 = 𝐹) → ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥) = ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
5150xpeq2d 4521 . . . . . 6 ((𝑠 = 𝑆𝑓 = 𝐹) → ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)) = ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
5241, 51iuneq12d 3801 . . . . 5 ((𝑠 = 𝑆𝑓 = 𝐹) → 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)) = 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
53 oveq2 5734 . . . . 5 (𝑠 = 𝑆 → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆))
54 df-dvap 12576 . . . . 5 D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)))
5552, 53, 54ovmpox 5851 . . . 4 ((𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∈ V) → (𝑆 D 𝐹) = 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
564, 5, 35, 55syl3anc 1197 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹) = 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
57 relxp 4606 . . . . . 6 Rel ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
5857rgenw 2459 . . . . 5 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)Rel ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
59 reliun 4618 . . . . 5 (Rel 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ ∀𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)Rel ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
6058, 59mpbir 145 . . . 4 Rel 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
61 df-rel 4504 . . . 4 (Rel 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ⊆ (V × V))
6260, 61mpbi 144 . . 3 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ⊆ (V × V)
6356, 62syl6eqss 3113 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹) ⊆ (V × V))
64 df-rel 4504 . 2 (Rel (𝑆 D 𝐹) ↔ (𝑆 D 𝐹) ⊆ (V × V))
6563, 64sylibr 133 1 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1312  wcel 1461  wral 2388  {crab 2392  Vcvv 2655  wss 3035  𝒫 cpw 3474  {csn 3491   cuni 3700   ciun 3777   class class class wbr 3893  cmpt 3947   × cxp 4495  dom cdm 4497  ccom 4501  Rel wrel 4502  wf 5075  cfv 5079  (class class class)co 5726  pm cpm 6495  cc 7539  cmin 7850   # cap 8255   / cdiv 8339  abscabs 10655  t crest 11957  MetOpencmopn 11991  Topctop 12001  intcnt 12099   lim climc 12573   D cdv 12574
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-mulrcl 7638  ax-addcom 7639  ax-mulcom 7640  ax-addass 7641  ax-mulass 7642  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-1rid 7646  ax-0id 7647  ax-rnegex 7648  ax-precex 7649  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-apti 7654  ax-pre-ltadd 7655  ax-pre-mulgt0 7656  ax-pre-mulext 7657  ax-arch 7658  ax-caucvg 7659
This theorem depends on definitions:  df-bi 116  df-stab 799  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rmo 2396  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-if 3439  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-id 4173  df-po 4176  df-iso 4177  df-iord 4246  df-on 4248  df-ilim 4249  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-isom 5088  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5990  df-2nd 5991  df-recs 6154  df-frec 6240  df-map 6496  df-pm 6497  df-sup 6821  df-inf 6822  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-reap 8249  df-ap 8256  df-div 8340  df-inn 8625  df-2 8683  df-3 8684  df-4 8685  df-n0 8876  df-z 8953  df-uz 9223  df-q 9308  df-rp 9338  df-xneg 9446  df-xadd 9447  df-seqfrec 10106  df-exp 10180  df-cj 10501  df-re 10502  df-im 10503  df-rsqrt 10656  df-abs 10657  df-rest 11959  df-topgen 11978  df-psmet 11993  df-xmet 11994  df-met 11995  df-bl 11996  df-mopn 11997  df-top 12002  df-topon 12015  df-bases 12047  df-ntr 12102  df-limced 12575  df-dvap 12576
This theorem is referenced by:  dvfgg  12606  dvidlemap  12609  dviaddf  12616
  Copyright terms: Public domain W3C validator