Step | Hyp | Ref
| Expression |
1 | | simpl 108 |
. . . . 5
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → 𝑆 ⊆ ℂ) |
2 | | cnex 7898 |
. . . . . 6
⊢ ℂ
∈ V |
3 | 2 | elpw2 4143 |
. . . . 5
⊢ (𝑆 ∈ 𝒫 ℂ ↔
𝑆 ⊆
ℂ) |
4 | 1, 3 | sylibr 133 |
. . . 4
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → 𝑆 ∈ 𝒫 ℂ) |
5 | | simpr 109 |
. . . 4
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → 𝐹 ∈ (ℂ ↑pm
𝑆)) |
6 | | eqid 2170 |
. . . . . . . . . 10
⊢
(MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘
− )) |
7 | 6 | cntoptop 13327 |
. . . . . . . . 9
⊢
(MetOpen‘(abs ∘ − )) ∈ Top |
8 | 7 | a1i 9 |
. . . . . . . 8
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → (MetOpen‘(abs ∘
− )) ∈ Top) |
9 | 4 | elexd 2743 |
. . . . . . . 8
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → 𝑆 ∈ V) |
10 | | resttop 12964 |
. . . . . . . 8
⊢
(((MetOpen‘(abs ∘ − )) ∈ Top ∧ 𝑆 ∈ V) →
((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top) |
11 | 8, 9, 10 | syl2anc 409 |
. . . . . . 7
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → ((MetOpen‘(abs ∘
− )) ↾t 𝑆) ∈ Top) |
12 | | elpmi 6645 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (ℂ
↑pm 𝑆) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ 𝑆)) |
13 | 12 | simprd 113 |
. . . . . . . . 9
⊢ (𝐹 ∈ (ℂ
↑pm 𝑆) → dom 𝐹 ⊆ 𝑆) |
14 | 13 | adantl 275 |
. . . . . . . 8
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → dom 𝐹 ⊆ 𝑆) |
15 | 6 | cntoptopon 13326 |
. . . . . . . . . . 11
⊢
(MetOpen‘(abs ∘ − )) ∈
(TopOn‘ℂ) |
16 | 15 | toponunii 12809 |
. . . . . . . . . 10
⊢ ℂ =
∪ (MetOpen‘(abs ∘ −
)) |
17 | 16 | restuni 12966 |
. . . . . . . . 9
⊢
(((MetOpen‘(abs ∘ − )) ∈ Top ∧ 𝑆 ⊆ ℂ) → 𝑆 = ∪
((MetOpen‘(abs ∘ − )) ↾t 𝑆)) |
18 | 8, 1, 17 | syl2anc 409 |
. . . . . . . 8
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → 𝑆 = ∪
((MetOpen‘(abs ∘ − )) ↾t 𝑆)) |
19 | 14, 18 | sseqtrd 3185 |
. . . . . . 7
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → dom 𝐹 ⊆ ∪
((MetOpen‘(abs ∘ − )) ↾t 𝑆)) |
20 | | eqid 2170 |
. . . . . . . 8
⊢ ∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆) =
∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆) |
21 | 20 | ntrss3 12917 |
. . . . . . 7
⊢
((((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top ∧ dom 𝐹 ⊆ ∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆))
→ ((int‘((MetOpen‘(abs ∘ − )) ↾t
𝑆))‘dom 𝐹) ⊆ ∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆)) |
22 | 11, 19, 21 | syl2anc 409 |
. . . . . 6
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ ∪
((MetOpen‘(abs ∘ − )) ↾t 𝑆)) |
23 | | uniexg 4424 |
. . . . . . 7
⊢
(((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top → ∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆)
∈ V) |
24 | | elpw2g 4142 |
. . . . . . 7
⊢ (∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆)
∈ V → (((int‘((MetOpen‘(abs ∘ − ))
↾t 𝑆))‘dom 𝐹) ∈ 𝒫 ∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆)
↔ ((int‘((MetOpen‘(abs ∘ − )) ↾t
𝑆))‘dom 𝐹) ⊆ ∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆))) |
25 | 11, 23, 24 | 3syl 17 |
. . . . . 6
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → (((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹) ∈ 𝒫 ∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆)
↔ ((int‘((MetOpen‘(abs ∘ − )) ↾t
𝑆))‘dom 𝐹) ⊆ ∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆))) |
26 | 22, 25 | mpbird 166 |
. . . . 5
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹) ∈ 𝒫 ∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆)) |
27 | | vex 2733 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
28 | 27 | snex 4171 |
. . . . . . . 8
⊢ {𝑥} ∈ V |
29 | | limccl 13422 |
. . . . . . . . 9
⊢ ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥) ⊆ ℂ |
30 | 2, 29 | ssexi 4127 |
. . . . . . . 8
⊢ ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥) ∈ V |
31 | 28, 30 | xpex 4726 |
. . . . . . 7
⊢ ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∈ V |
32 | 31 | rgenw 2525 |
. . . . . 6
⊢
∀𝑥 ∈
((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∈ V |
33 | 32 | a1i 9 |
. . . . 5
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → ∀𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∈ V) |
34 | | iunexg 6098 |
. . . . 5
⊢
((((int‘((MetOpen‘(abs ∘ − ))
↾t 𝑆))‘dom 𝐹) ∈ 𝒫 ∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆)
∧ ∀𝑥 ∈
((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∈ V) → ∪ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∈ V) |
35 | 26, 33, 34 | syl2anc 409 |
. . . 4
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → ∪ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∈ V) |
36 | | simpl 108 |
. . . . . . . . 9
⊢ ((𝑠 = 𝑆 ∧ 𝑓 = 𝐹) → 𝑠 = 𝑆) |
37 | 36 | oveq2d 5869 |
. . . . . . . 8
⊢ ((𝑠 = 𝑆 ∧ 𝑓 = 𝐹) → ((MetOpen‘(abs ∘
− )) ↾t 𝑠) = ((MetOpen‘(abs ∘ − ))
↾t 𝑆)) |
38 | 37 | fveq2d 5500 |
. . . . . . 7
⊢ ((𝑠 = 𝑆 ∧ 𝑓 = 𝐹) → (int‘((MetOpen‘(abs
∘ − )) ↾t 𝑠)) = (int‘((MetOpen‘(abs ∘
− )) ↾t 𝑆))) |
39 | | dmeq 4811 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹) |
40 | 39 | adantl 275 |
. . . . . . 7
⊢ ((𝑠 = 𝑆 ∧ 𝑓 = 𝐹) → dom 𝑓 = dom 𝐹) |
41 | 38, 40 | fveq12d 5503 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑓 = 𝐹) → ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑠))‘dom 𝑓) = ((int‘((MetOpen‘(abs ∘
− )) ↾t 𝑆))‘dom 𝐹)) |
42 | 40 | rabeqdv 2724 |
. . . . . . . . 9
⊢ ((𝑠 = 𝑆 ∧ 𝑓 = 𝐹) → {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} = {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥}) |
43 | | fveq1 5495 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐹 → (𝑓‘𝑧) = (𝐹‘𝑧)) |
44 | 43 | adantl 275 |
. . . . . . . . . . 11
⊢ ((𝑠 = 𝑆 ∧ 𝑓 = 𝐹) → (𝑓‘𝑧) = (𝐹‘𝑧)) |
45 | | fveq1 5495 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) |
46 | 45 | adantl 275 |
. . . . . . . . . . 11
⊢ ((𝑠 = 𝑆 ∧ 𝑓 = 𝐹) → (𝑓‘𝑥) = (𝐹‘𝑥)) |
47 | 44, 46 | oveq12d 5871 |
. . . . . . . . . 10
⊢ ((𝑠 = 𝑆 ∧ 𝑓 = 𝐹) → ((𝑓‘𝑧) − (𝑓‘𝑥)) = ((𝐹‘𝑧) − (𝐹‘𝑥))) |
48 | 47 | oveq1d 5868 |
. . . . . . . . 9
⊢ ((𝑠 = 𝑆 ∧ 𝑓 = 𝐹) → (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥)) = (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) |
49 | 42, 48 | mpteq12dv 4071 |
. . . . . . . 8
⊢ ((𝑠 = 𝑆 ∧ 𝑓 = 𝐹) → (𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) = (𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)))) |
50 | 49 | oveq1d 5868 |
. . . . . . 7
⊢ ((𝑠 = 𝑆 ∧ 𝑓 = 𝐹) → ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥) = ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) |
51 | 50 | xpeq2d 4635 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑓 = 𝐹) → ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) = ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
52 | 41, 51 | iuneq12d 3897 |
. . . . 5
⊢ ((𝑠 = 𝑆 ∧ 𝑓 = 𝐹) → ∪
𝑥 ∈
((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) = ∪
𝑥 ∈
((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
53 | | oveq2 5861 |
. . . . 5
⊢ (𝑠 = 𝑆 → (ℂ ↑pm
𝑠) = (ℂ
↑pm 𝑆)) |
54 | | df-dvap 13420 |
. . . . 5
⊢ D =
(𝑠 ∈ 𝒫
ℂ, 𝑓 ∈ (ℂ
↑pm 𝑠) ↦ ∪
𝑥 ∈
((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
55 | 52, 53, 54 | ovmpox 5981 |
. . . 4
⊢ ((𝑆 ∈ 𝒫 ℂ ∧
𝐹 ∈ (ℂ
↑pm 𝑆) ∧ ∪
𝑥 ∈
((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∈ V) → (𝑆 D 𝐹) = ∪
𝑥 ∈
((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
56 | 4, 5, 35, 55 | syl3anc 1233 |
. . 3
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → (𝑆 D 𝐹) = ∪
𝑥 ∈
((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
57 | | relxp 4720 |
. . . . . 6
⊢ Rel
({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) |
58 | 57 | rgenw 2525 |
. . . . 5
⊢
∀𝑥 ∈
((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)Rel ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) |
59 | | reliun 4732 |
. . . . 5
⊢ (Rel
∪ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ↔ ∀𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)Rel ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
60 | 58, 59 | mpbir 145 |
. . . 4
⊢ Rel
∪ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) |
61 | | df-rel 4618 |
. . . 4
⊢ (Rel
∪ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ↔ ∪
𝑥 ∈
((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ (V × V)) |
62 | 60, 61 | mpbi 144 |
. . 3
⊢ ∪ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ (V × V) |
63 | 56, 62 | eqsstrdi 3199 |
. 2
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → (𝑆 D 𝐹) ⊆ (V × V)) |
64 | | df-rel 4618 |
. 2
⊢ (Rel
(𝑆 D 𝐹) ↔ (𝑆 D 𝐹) ⊆ (V × V)) |
65 | 63, 64 | sylibr 133 |
1
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → Rel (𝑆 D 𝐹)) |