| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpl 109 | 
. . . . 5
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → 𝑆 ⊆ ℂ) | 
| 2 |   | cnex 8003 | 
. . . . . 6
⊢ ℂ
∈ V | 
| 3 | 2 | elpw2 4190 | 
. . . . 5
⊢ (𝑆 ∈ 𝒫 ℂ ↔
𝑆 ⊆
ℂ) | 
| 4 | 1, 3 | sylibr 134 | 
. . . 4
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → 𝑆 ∈ 𝒫 ℂ) | 
| 5 |   | simpr 110 | 
. . . 4
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → 𝐹 ∈ (ℂ ↑pm
𝑆)) | 
| 6 |   | eqid 2196 | 
. . . . . . . . . 10
⊢
(MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘
− )) | 
| 7 | 6 | cntoptop 14769 | 
. . . . . . . . 9
⊢
(MetOpen‘(abs ∘ − )) ∈ Top | 
| 8 | 7 | a1i 9 | 
. . . . . . . 8
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → (MetOpen‘(abs ∘
− )) ∈ Top) | 
| 9 | 4 | elexd 2776 | 
. . . . . . . 8
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → 𝑆 ∈ V) | 
| 10 |   | resttop 14406 | 
. . . . . . . 8
⊢
(((MetOpen‘(abs ∘ − )) ∈ Top ∧ 𝑆 ∈ V) →
((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top) | 
| 11 | 8, 9, 10 | syl2anc 411 | 
. . . . . . 7
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → ((MetOpen‘(abs ∘
− )) ↾t 𝑆) ∈ Top) | 
| 12 |   | elpmi 6726 | 
. . . . . . . . . 10
⊢ (𝐹 ∈ (ℂ
↑pm 𝑆) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ 𝑆)) | 
| 13 | 12 | simprd 114 | 
. . . . . . . . 9
⊢ (𝐹 ∈ (ℂ
↑pm 𝑆) → dom 𝐹 ⊆ 𝑆) | 
| 14 | 13 | adantl 277 | 
. . . . . . . 8
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → dom 𝐹 ⊆ 𝑆) | 
| 15 | 6 | cntoptopon 14768 | 
. . . . . . . . . . 11
⊢
(MetOpen‘(abs ∘ − )) ∈
(TopOn‘ℂ) | 
| 16 | 15 | toponunii 14253 | 
. . . . . . . . . 10
⊢ ℂ =
∪ (MetOpen‘(abs ∘ −
)) | 
| 17 | 16 | restuni 14408 | 
. . . . . . . . 9
⊢
(((MetOpen‘(abs ∘ − )) ∈ Top ∧ 𝑆 ⊆ ℂ) → 𝑆 = ∪
((MetOpen‘(abs ∘ − )) ↾t 𝑆)) | 
| 18 | 8, 1, 17 | syl2anc 411 | 
. . . . . . . 8
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → 𝑆 = ∪
((MetOpen‘(abs ∘ − )) ↾t 𝑆)) | 
| 19 | 14, 18 | sseqtrd 3221 | 
. . . . . . 7
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → dom 𝐹 ⊆ ∪
((MetOpen‘(abs ∘ − )) ↾t 𝑆)) | 
| 20 |   | eqid 2196 | 
. . . . . . . 8
⊢ ∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆) =
∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆) | 
| 21 | 20 | ntrss3 14359 | 
. . . . . . 7
⊢
((((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top ∧ dom 𝐹 ⊆ ∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆))
→ ((int‘((MetOpen‘(abs ∘ − )) ↾t
𝑆))‘dom 𝐹) ⊆ ∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆)) | 
| 22 | 11, 19, 21 | syl2anc 411 | 
. . . . . 6
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ ∪
((MetOpen‘(abs ∘ − )) ↾t 𝑆)) | 
| 23 |   | uniexg 4474 | 
. . . . . . 7
⊢
(((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top → ∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆)
∈ V) | 
| 24 |   | elpw2g 4189 | 
. . . . . . 7
⊢ (∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆)
∈ V → (((int‘((MetOpen‘(abs ∘ − ))
↾t 𝑆))‘dom 𝐹) ∈ 𝒫 ∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆)
↔ ((int‘((MetOpen‘(abs ∘ − )) ↾t
𝑆))‘dom 𝐹) ⊆ ∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆))) | 
| 25 | 11, 23, 24 | 3syl 17 | 
. . . . . 6
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → (((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹) ∈ 𝒫 ∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆)
↔ ((int‘((MetOpen‘(abs ∘ − )) ↾t
𝑆))‘dom 𝐹) ⊆ ∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆))) | 
| 26 | 22, 25 | mpbird 167 | 
. . . . 5
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹) ∈ 𝒫 ∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆)) | 
| 27 |   | vex 2766 | 
. . . . . . . . 9
⊢ 𝑥 ∈ V | 
| 28 | 27 | snex 4218 | 
. . . . . . . 8
⊢ {𝑥} ∈ V | 
| 29 |   | limccl 14895 | 
. . . . . . . . 9
⊢ ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥) ⊆ ℂ | 
| 30 | 2, 29 | ssexi 4171 | 
. . . . . . . 8
⊢ ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥) ∈ V | 
| 31 | 28, 30 | xpex 4778 | 
. . . . . . 7
⊢ ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∈ V | 
| 32 | 31 | rgenw 2552 | 
. . . . . 6
⊢
∀𝑥 ∈
((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∈ V | 
| 33 | 32 | a1i 9 | 
. . . . 5
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → ∀𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∈ V) | 
| 34 |   | iunexg 6176 | 
. . . . 5
⊢
((((int‘((MetOpen‘(abs ∘ − ))
↾t 𝑆))‘dom 𝐹) ∈ 𝒫 ∪ ((MetOpen‘(abs ∘ − ))
↾t 𝑆)
∧ ∀𝑥 ∈
((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∈ V) → ∪ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∈ V) | 
| 35 | 26, 33, 34 | syl2anc 411 | 
. . . 4
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → ∪ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∈ V) | 
| 36 |   | simpl 109 | 
. . . . . . . . 9
⊢ ((𝑠 = 𝑆 ∧ 𝑓 = 𝐹) → 𝑠 = 𝑆) | 
| 37 | 36 | oveq2d 5938 | 
. . . . . . . 8
⊢ ((𝑠 = 𝑆 ∧ 𝑓 = 𝐹) → ((MetOpen‘(abs ∘
− )) ↾t 𝑠) = ((MetOpen‘(abs ∘ − ))
↾t 𝑆)) | 
| 38 | 37 | fveq2d 5562 | 
. . . . . . 7
⊢ ((𝑠 = 𝑆 ∧ 𝑓 = 𝐹) → (int‘((MetOpen‘(abs
∘ − )) ↾t 𝑠)) = (int‘((MetOpen‘(abs ∘
− )) ↾t 𝑆))) | 
| 39 |   | dmeq 4866 | 
. . . . . . . 8
⊢ (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹) | 
| 40 | 39 | adantl 277 | 
. . . . . . 7
⊢ ((𝑠 = 𝑆 ∧ 𝑓 = 𝐹) → dom 𝑓 = dom 𝐹) | 
| 41 | 38, 40 | fveq12d 5565 | 
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑓 = 𝐹) → ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑠))‘dom 𝑓) = ((int‘((MetOpen‘(abs ∘
− )) ↾t 𝑆))‘dom 𝐹)) | 
| 42 | 40 | rabeqdv 2757 | 
. . . . . . . . 9
⊢ ((𝑠 = 𝑆 ∧ 𝑓 = 𝐹) → {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} = {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥}) | 
| 43 |   | fveq1 5557 | 
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐹 → (𝑓‘𝑧) = (𝐹‘𝑧)) | 
| 44 | 43 | adantl 277 | 
. . . . . . . . . . 11
⊢ ((𝑠 = 𝑆 ∧ 𝑓 = 𝐹) → (𝑓‘𝑧) = (𝐹‘𝑧)) | 
| 45 |   | fveq1 5557 | 
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | 
| 46 | 45 | adantl 277 | 
. . . . . . . . . . 11
⊢ ((𝑠 = 𝑆 ∧ 𝑓 = 𝐹) → (𝑓‘𝑥) = (𝐹‘𝑥)) | 
| 47 | 44, 46 | oveq12d 5940 | 
. . . . . . . . . 10
⊢ ((𝑠 = 𝑆 ∧ 𝑓 = 𝐹) → ((𝑓‘𝑧) − (𝑓‘𝑥)) = ((𝐹‘𝑧) − (𝐹‘𝑥))) | 
| 48 | 47 | oveq1d 5937 | 
. . . . . . . . 9
⊢ ((𝑠 = 𝑆 ∧ 𝑓 = 𝐹) → (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥)) = (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) | 
| 49 | 42, 48 | mpteq12dv 4115 | 
. . . . . . . 8
⊢ ((𝑠 = 𝑆 ∧ 𝑓 = 𝐹) → (𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) = (𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)))) | 
| 50 | 49 | oveq1d 5937 | 
. . . . . . 7
⊢ ((𝑠 = 𝑆 ∧ 𝑓 = 𝐹) → ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥) = ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) | 
| 51 | 50 | xpeq2d 4687 | 
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑓 = 𝐹) → ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) = ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) | 
| 52 | 41, 51 | iuneq12d 3940 | 
. . . . 5
⊢ ((𝑠 = 𝑆 ∧ 𝑓 = 𝐹) → ∪
𝑥 ∈
((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) = ∪
𝑥 ∈
((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) | 
| 53 |   | oveq2 5930 | 
. . . . 5
⊢ (𝑠 = 𝑆 → (ℂ ↑pm
𝑠) = (ℂ
↑pm 𝑆)) | 
| 54 |   | df-dvap 14893 | 
. . . . 5
⊢  D =
(𝑠 ∈ 𝒫
ℂ, 𝑓 ∈ (ℂ
↑pm 𝑠) ↦ ∪
𝑥 ∈
((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) | 
| 55 | 52, 53, 54 | ovmpox 6051 | 
. . . 4
⊢ ((𝑆 ∈ 𝒫 ℂ ∧
𝐹 ∈ (ℂ
↑pm 𝑆) ∧ ∪
𝑥 ∈
((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∈ V) → (𝑆 D 𝐹) = ∪
𝑥 ∈
((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) | 
| 56 | 4, 5, 35, 55 | syl3anc 1249 | 
. . 3
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → (𝑆 D 𝐹) = ∪
𝑥 ∈
((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) | 
| 57 |   | relxp 4772 | 
. . . . . 6
⊢ Rel
({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) | 
| 58 | 57 | rgenw 2552 | 
. . . . 5
⊢
∀𝑥 ∈
((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)Rel ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) | 
| 59 |   | reliun 4784 | 
. . . . 5
⊢ (Rel
∪ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ↔ ∀𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)Rel ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) | 
| 60 | 58, 59 | mpbir 146 | 
. . . 4
⊢ Rel
∪ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) | 
| 61 |   | df-rel 4670 | 
. . . 4
⊢ (Rel
∪ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ↔ ∪
𝑥 ∈
((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ (V × V)) | 
| 62 | 60, 61 | mpbi 145 | 
. . 3
⊢ ∪ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ⊆ (V × V) | 
| 63 | 56, 62 | eqsstrdi 3235 | 
. 2
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → (𝑆 D 𝐹) ⊆ (V × V)) | 
| 64 |   | df-rel 4670 | 
. 2
⊢ (Rel
(𝑆 D 𝐹) ↔ (𝑆 D 𝐹) ⊆ (V × V)) | 
| 65 | 63, 64 | sylibr 134 | 
1
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → Rel (𝑆 D 𝐹)) |