ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldvg GIF version

Theorem reldvg 13401
Description: The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 25-Jun-2023.)
Assertion
Ref Expression
reldvg ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D 𝐹))

Proof of Theorem reldvg
Dummy variables 𝑓 𝑠 𝑤 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 ⊆ ℂ)
2 cnex 7885 . . . . . 6 ℂ ∈ V
32elpw2 4141 . . . . 5 (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ)
41, 3sylibr 133 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 ∈ 𝒫 ℂ)
5 simpr 109 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
6 eqid 2170 . . . . . . . . . 10 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
76cntoptop 13286 . . . . . . . . 9 (MetOpen‘(abs ∘ − )) ∈ Top
87a1i 9 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (MetOpen‘(abs ∘ − )) ∈ Top)
94elexd 2743 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 ∈ V)
10 resttop 12923 . . . . . . . 8 (((MetOpen‘(abs ∘ − )) ∈ Top ∧ 𝑆 ∈ V) → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top)
118, 9, 10syl2anc 409 . . . . . . 7 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top)
12 elpmi 6641 . . . . . . . . . 10 (𝐹 ∈ (ℂ ↑pm 𝑆) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆))
1312simprd 113 . . . . . . . . 9 (𝐹 ∈ (ℂ ↑pm 𝑆) → dom 𝐹𝑆)
1413adantl 275 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → dom 𝐹𝑆)
156cntoptopon 13285 . . . . . . . . . . 11 (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)
1615toponunii 12768 . . . . . . . . . 10 ℂ = (MetOpen‘(abs ∘ − ))
1716restuni 12925 . . . . . . . . 9 (((MetOpen‘(abs ∘ − )) ∈ Top ∧ 𝑆 ⊆ ℂ) → 𝑆 = ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
188, 1, 17syl2anc 409 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 = ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
1914, 18sseqtrd 3185 . . . . . . 7 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → dom 𝐹 ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
20 eqid 2170 . . . . . . . 8 ((MetOpen‘(abs ∘ − )) ↾t 𝑆) = ((MetOpen‘(abs ∘ − )) ↾t 𝑆)
2120ntrss3 12876 . . . . . . 7 ((((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top ∧ dom 𝐹 ((MetOpen‘(abs ∘ − )) ↾t 𝑆)) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
2211, 19, 21syl2anc 409 . . . . . 6 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
23 uniexg 4422 . . . . . . 7 (((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ V)
24 elpw2g 4140 . . . . . . 7 ( ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ V → (((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∈ 𝒫 ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ↔ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ ((MetOpen‘(abs ∘ − )) ↾t 𝑆)))
2511, 23, 243syl 17 . . . . . 6 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∈ 𝒫 ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ↔ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ⊆ ((MetOpen‘(abs ∘ − )) ↾t 𝑆)))
2622, 25mpbird 166 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∈ 𝒫 ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
27 vex 2733 . . . . . . . . 9 𝑥 ∈ V
2827snex 4169 . . . . . . . 8 {𝑥} ∈ V
29 limccl 13381 . . . . . . . . 9 ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥) ⊆ ℂ
302, 29ssexi 4125 . . . . . . . 8 ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥) ∈ V
3128, 30xpex 4724 . . . . . . 7 ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∈ V
3231rgenw 2525 . . . . . 6 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∈ V
3332a1i 9 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ∀𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∈ V)
34 iunexg 6095 . . . . 5 ((((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹) ∈ 𝒫 ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∧ ∀𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∈ V) → 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∈ V)
3526, 33, 34syl2anc 409 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∈ V)
36 simpl 108 . . . . . . . . 9 ((𝑠 = 𝑆𝑓 = 𝐹) → 𝑠 = 𝑆)
3736oveq2d 5866 . . . . . . . 8 ((𝑠 = 𝑆𝑓 = 𝐹) → ((MetOpen‘(abs ∘ − )) ↾t 𝑠) = ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
3837fveq2d 5498 . . . . . . 7 ((𝑠 = 𝑆𝑓 = 𝐹) → (int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠)) = (int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆)))
39 dmeq 4809 . . . . . . . 8 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
4039adantl 275 . . . . . . 7 ((𝑠 = 𝑆𝑓 = 𝐹) → dom 𝑓 = dom 𝐹)
4138, 40fveq12d 5501 . . . . . 6 ((𝑠 = 𝑆𝑓 = 𝐹) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓) = ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹))
4240rabeqdv 2724 . . . . . . . . 9 ((𝑠 = 𝑆𝑓 = 𝐹) → {𝑤 ∈ dom 𝑓𝑤 # 𝑥} = {𝑤 ∈ dom 𝐹𝑤 # 𝑥})
43 fveq1 5493 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓𝑧) = (𝐹𝑧))
4443adantl 275 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑓 = 𝐹) → (𝑓𝑧) = (𝐹𝑧))
45 fveq1 5493 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
4645adantl 275 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑓 = 𝐹) → (𝑓𝑥) = (𝐹𝑥))
4744, 46oveq12d 5868 . . . . . . . . . 10 ((𝑠 = 𝑆𝑓 = 𝐹) → ((𝑓𝑧) − (𝑓𝑥)) = ((𝐹𝑧) − (𝐹𝑥)))
4847oveq1d 5865 . . . . . . . . 9 ((𝑠 = 𝑆𝑓 = 𝐹) → (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥)) = (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
4942, 48mpteq12dv 4069 . . . . . . . 8 ((𝑠 = 𝑆𝑓 = 𝐹) → (𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) = (𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))))
5049oveq1d 5865 . . . . . . 7 ((𝑠 = 𝑆𝑓 = 𝐹) → ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥) = ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
5150xpeq2d 4633 . . . . . 6 ((𝑠 = 𝑆𝑓 = 𝐹) → ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)) = ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
5241, 51iuneq12d 3895 . . . . 5 ((𝑠 = 𝑆𝑓 = 𝐹) → 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)) = 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
53 oveq2 5858 . . . . 5 (𝑠 = 𝑆 → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆))
54 df-dvap 13379 . . . . 5 D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)))
5552, 53, 54ovmpox 5978 . . . 4 ((𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∈ V) → (𝑆 D 𝐹) = 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
564, 5, 35, 55syl3anc 1233 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹) = 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
57 relxp 4718 . . . . . 6 Rel ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
5857rgenw 2525 . . . . 5 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)Rel ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
59 reliun 4730 . . . . 5 (Rel 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ ∀𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)Rel ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
6058, 59mpbir 145 . . . 4 Rel 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
61 df-rel 4616 . . . 4 (Rel 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ⊆ (V × V))
6260, 61mpbi 144 . . 3 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘dom 𝐹)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝐹𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ⊆ (V × V)
6356, 62eqsstrdi 3199 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹) ⊆ (V × V))
64 df-rel 4616 . 2 (Rel (𝑆 D 𝐹) ↔ (𝑆 D 𝐹) ⊆ (V × V))
6563, 64sylibr 133 1 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wral 2448  {crab 2452  Vcvv 2730  wss 3121  𝒫 cpw 3564  {csn 3581   cuni 3794   ciun 3871   class class class wbr 3987  cmpt 4048   × cxp 4607  dom cdm 4609  ccom 4613  Rel wrel 4614  wf 5192  cfv 5196  (class class class)co 5850  pm cpm 6623  cc 7759  cmin 8077   # cap 8487   / cdiv 8576  abscabs 10948  t crest 12566  MetOpencmopn 12738  Topctop 12748  intcnt 12846   lim climc 13376   D cdv 13377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880  ax-caucvg 7881
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-frec 6367  df-map 6624  df-pm 6625  df-sup 6957  df-inf 6958  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-n0 9123  df-z 9200  df-uz 9475  df-q 9566  df-rp 9598  df-xneg 9716  df-xadd 9717  df-seqfrec 10389  df-exp 10463  df-cj 10793  df-re 10794  df-im 10795  df-rsqrt 10949  df-abs 10950  df-rest 12568  df-topgen 12587  df-psmet 12740  df-xmet 12741  df-met 12742  df-bl 12743  df-mopn 12744  df-top 12749  df-topon 12762  df-bases 12794  df-ntr 12849  df-limced 13378  df-dvap 13379
This theorem is referenced by:  dvfgg  13410  dvidlemap  13413  dvmulxxbr  13419  dviaddf  13422  dvimulf  13423  dvcoapbr  13424
  Copyright terms: Public domain W3C validator