| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-fzo | GIF version | ||
| Description: Define a function generating sets of integers using a half-open range. Read (𝑀..^𝑁) as the integers from 𝑀 up to, but not including, 𝑁; contrast with (𝑀...𝑁) df-fz 10084, which includes 𝑁. Not including the endpoint simplifies a number of formulas related to cardinality and splitting; contrast fzosplit 10253 with fzsplit 10126, for instance. (Contributed by Stefan O'Rear, 14-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| df-fzo | ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cfzo 10217 | . 2 class ..^ | |
| 2 | vm | . . 3 setvar 𝑚 | |
| 3 | vn | . . 3 setvar 𝑛 | |
| 4 | cz 9326 | . . 3 class ℤ | |
| 5 | 2 | cv 1363 | . . . 4 class 𝑚 | 
| 6 | 3 | cv 1363 | . . . . 5 class 𝑛 | 
| 7 | c1 7880 | . . . . 5 class 1 | |
| 8 | cmin 8197 | . . . . 5 class − | |
| 9 | 6, 7, 8 | co 5922 | . . . 4 class (𝑛 − 1) | 
| 10 | cfz 10083 | . . . 4 class ... | |
| 11 | 5, 9, 10 | co 5922 | . . 3 class (𝑚...(𝑛 − 1)) | 
| 12 | 2, 3, 4, 4, 11 | cmpo 5924 | . 2 class (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | 
| 13 | 1, 12 | wceq 1364 | 1 wff ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | 
| Colors of variables: wff set class | 
| This definition is referenced by: fzof 10219 elfzoel1 10220 elfzoel2 10221 fzoval 10223 | 
| Copyright terms: Public domain | W3C validator |