ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-fzo GIF version

Definition df-fzo 10335
Description: Define a function generating sets of integers using a half-open range. Read (𝑀..^𝑁) as the integers from 𝑀 up to, but not including, 𝑁; contrast with (𝑀...𝑁) df-fz 10201, which includes 𝑁. Not including the endpoint simplifies a number of formulas related to cardinality and splitting; contrast fzosplit 10371 with fzsplit 10243, for instance. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
df-fzo ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1)))
Distinct variable group:   𝑚,𝑛

Detailed syntax breakdown of Definition df-fzo
StepHypRef Expression
1 cfzo 10334 . 2 class ..^
2 vm . . 3 setvar 𝑚
3 vn . . 3 setvar 𝑛
4 cz 9442 . . 3 class
52cv 1394 . . . 4 class 𝑚
63cv 1394 . . . . 5 class 𝑛
7 c1 7996 . . . . 5 class 1
8 cmin 8313 . . . . 5 class
96, 7, 8co 6000 . . . 4 class (𝑛 − 1)
10 cfz 10200 . . . 4 class ...
115, 9, 10co 6000 . . 3 class (𝑚...(𝑛 − 1))
122, 3, 4, 4, 11cmpo 6002 . 2 class (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1)))
131, 12wceq 1395 1 wff ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1)))
Colors of variables: wff set class
This definition is referenced by:  fzof  10336  elfzoel1  10337  elfzoel2  10338  fzoval  10340
  Copyright terms: Public domain W3C validator