| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzoel2 | GIF version | ||
| Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfzoel2 | ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fzo 10285 | . 2 ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | |
| 2 | 1 | elmpocl2 6156 | 1 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 (class class class)co 5957 1c1 7946 − cmin 8263 ℤcz 9392 ...cfz 10150 ..^cfzo 10284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-fzo 10285 |
| This theorem is referenced by: elfzoelz 10289 elfzo2 10292 elfzole1 10298 elfzolt2 10299 elfzolt3 10300 elfzolt2b 10301 elfzolt3b 10302 fzonel 10303 elfzouz2 10304 fzonnsub 10313 fzoss1 10315 fzospliti 10320 fzodisj 10322 fzoaddel 10338 fzo0addelr 10340 elfzoextl 10342 elfzoext 10343 elincfzoext 10344 fzosubel 10345 fzoend 10373 ssfzo12 10375 fzofzp1 10378 peano2fzor 10383 fzostep1 10388 iseqf1olemqk 10674 fzomaxdiflem 11498 fzo0dvdseq 12243 fzocongeq 12244 addmodlteqALT 12245 gsumfzfsumlemm 14424 |
| Copyright terms: Public domain | W3C validator |