Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfzoel2 | GIF version |
Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
elfzoel2 | ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fzo 10078 | . 2 ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | |
2 | 1 | elmpocl2 6038 | 1 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 (class class class)co 5842 1c1 7754 − cmin 8069 ℤcz 9191 ...cfz 9944 ..^cfzo 10077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-fzo 10078 |
This theorem is referenced by: elfzoelz 10082 elfzo2 10085 elfzole1 10090 elfzolt2 10091 elfzolt3 10092 elfzolt2b 10093 elfzolt3b 10094 fzonel 10095 elfzouz2 10096 fzonnsub 10104 fzoss1 10106 fzospliti 10111 fzodisj 10113 fzoaddel 10127 fzosubel 10129 fzoend 10157 ssfzo12 10159 fzofzp1 10162 peano2fzor 10167 fzostep1 10172 iseqf1olemqk 10429 fzomaxdiflem 11054 fzo0dvdseq 11795 fzocongeq 11796 addmodlteqALT 11797 |
Copyright terms: Public domain | W3C validator |