ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzoel2 GIF version

Theorem elfzoel2 10338
Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
elfzoel2 (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ)

Proof of Theorem elfzoel2
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fzo 10335 . 2 ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1)))
21elmpocl2 6201 1 (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  (class class class)co 6000  1c1 7996  cmin 8313  cz 9442  ...cfz 10200  ..^cfzo 10334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-fzo 10335
This theorem is referenced by:  elfzoelz  10339  elfzo2  10342  elfzole1  10348  elfzolt2  10349  elfzolt3  10350  elfzolt2b  10351  elfzolt3b  10352  fzonel  10353  elfzouz2  10354  fzonnsub  10363  fzoss1  10365  fzospliti  10370  fzodisj  10372  fzoaddel  10388  fzo0addelr  10390  elfzoextl  10392  elfzoext  10393  elincfzoext  10394  fzosubel  10395  fzoend  10423  ssfzo12  10425  fzofzp1  10428  peano2fzor  10433  fzostep1  10438  iseqf1olemqk  10724  fzomaxdiflem  11618  fzo0dvdseq  12363  fzocongeq  12364  addmodlteqALT  12365  gsumfzfsumlemm  14545
  Copyright terms: Public domain W3C validator