ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzoel2 GIF version

Theorem elfzoel2 10054
Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
elfzoel2 (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ)

Proof of Theorem elfzoel2
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fzo 10051 . 2 ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1)))
21elmpocl2 6022 1 (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2128  (class class class)co 5826  1c1 7735  cmin 8050  cz 9172  ...cfz 9918  ..^cfzo 10050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-br 3968  df-opab 4028  df-id 4255  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-iota 5137  df-fun 5174  df-fv 5180  df-ov 5829  df-oprab 5830  df-mpo 5831  df-fzo 10051
This theorem is referenced by:  elfzoelz  10055  elfzo2  10058  elfzole1  10063  elfzolt2  10064  elfzolt3  10065  elfzolt2b  10066  elfzolt3b  10067  fzonel  10068  elfzouz2  10069  fzonnsub  10077  fzoss1  10079  fzospliti  10084  fzodisj  10086  fzoaddel  10100  fzosubel  10102  fzoend  10130  ssfzo12  10132  fzofzp1  10135  peano2fzor  10140  fzostep1  10145  iseqf1olemqk  10402  fzomaxdiflem  11023  fzo0dvdseq  11761  fzocongeq  11762  addmodlteqALT  11763
  Copyright terms: Public domain W3C validator