![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfzoel2 | GIF version |
Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
elfzoel2 | ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fzo 10212 | . 2 ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | |
2 | 1 | elmpocl2 6117 | 1 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 (class class class)co 5919 1c1 7875 − cmin 8192 ℤcz 9320 ...cfz 10077 ..^cfzo 10211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-fzo 10212 |
This theorem is referenced by: elfzoelz 10216 elfzo2 10219 elfzole1 10225 elfzolt2 10226 elfzolt3 10227 elfzolt2b 10228 elfzolt3b 10229 fzonel 10230 elfzouz2 10231 fzonnsub 10239 fzoss1 10241 fzospliti 10246 fzodisj 10248 fzoaddel 10262 fzosubel 10264 fzoend 10292 ssfzo12 10294 fzofzp1 10297 peano2fzor 10302 fzostep1 10307 iseqf1olemqk 10581 fzomaxdiflem 11259 fzo0dvdseq 12002 fzocongeq 12003 addmodlteqALT 12004 gsumfzfsumlemm 14086 |
Copyright terms: Public domain | W3C validator |