| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzoel2 | GIF version | ||
| Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfzoel2 | ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fzo 10264 | . 2 ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | |
| 2 | 1 | elmpocl2 6142 | 1 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 (class class class)co 5943 1c1 7925 − cmin 8242 ℤcz 9371 ...cfz 10129 ..^cfzo 10263 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-fzo 10264 |
| This theorem is referenced by: elfzoelz 10268 elfzo2 10271 elfzole1 10277 elfzolt2 10278 elfzolt3 10279 elfzolt2b 10280 elfzolt3b 10281 fzonel 10282 elfzouz2 10283 fzonnsub 10291 fzoss1 10293 fzospliti 10298 fzodisj 10300 fzoaddel 10314 fzo0addelr 10316 elfzoextl 10318 elfzoext 10319 elincfzoext 10320 fzosubel 10321 fzoend 10349 ssfzo12 10351 fzofzp1 10354 peano2fzor 10359 fzostep1 10364 iseqf1olemqk 10650 fzomaxdiflem 11365 fzo0dvdseq 12110 fzocongeq 12111 addmodlteqALT 12112 gsumfzfsumlemm 14291 |
| Copyright terms: Public domain | W3C validator |