Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfzoel1 | GIF version |
Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
elfzoel1 | ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fzo 10099 | . 2 ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | |
2 | 1 | elmpocl1 6048 | 1 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 (class class class)co 5853 1c1 7775 − cmin 8090 ℤcz 9212 ...cfz 9965 ..^cfzo 10098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-fzo 10099 |
This theorem is referenced by: elfzoelz 10103 fzoval 10104 elfzo2 10106 elfzole1 10111 elfzolt2 10112 elfzolt3 10113 elfzolt3b 10115 fzospliti 10132 fzoaddel 10148 fzosubel 10150 fzosubel3 10152 fzofzp1 10183 fzostep1 10193 fzomaxdiflem 11076 fzocongeq 11818 |
Copyright terms: Public domain | W3C validator |