ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzoel1 GIF version

Theorem elfzoel1 10145
Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
elfzoel1 (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ)

Proof of Theorem elfzoel1
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fzo 10143 . 2 ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1)))
21elmpocl1 6070 1 (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2148  (class class class)co 5875  1c1 7812  cmin 8128  cz 9253  ...cfz 10008  ..^cfzo 10142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-fzo 10143
This theorem is referenced by:  elfzoelz  10147  fzoval  10148  elfzo2  10150  elfzole1  10155  elfzolt2  10156  elfzolt3  10157  elfzolt3b  10159  fzospliti  10176  fzoaddel  10192  fzosubel  10194  fzosubel3  10196  fzofzp1  10227  fzostep1  10237  fzomaxdiflem  11121  fzocongeq  11864
  Copyright terms: Public domain W3C validator