| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elfzoel1 | GIF version | ||
| Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| elfzoel1 | ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-fzo 10218 | . 2 ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | |
| 2 | 1 | elmpocl1 6119 | 1 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∈ wcel 2167 (class class class)co 5922 1c1 7880 − cmin 8197 ℤcz 9326 ...cfz 10083 ..^cfzo 10217 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-fzo 10218 | 
| This theorem is referenced by: elfzoelz 10222 fzoval 10223 elfzo2 10225 elfzole1 10231 elfzolt2 10232 elfzolt3 10233 elfzolt3b 10235 fzospliti 10252 fzoaddel 10268 fzosubel 10270 fzosubel3 10272 fzofzp1 10303 fzostep1 10313 fzomaxdiflem 11277 fzocongeq 12023 | 
| Copyright terms: Public domain | W3C validator |