| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzoel1 | GIF version | ||
| Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfzoel1 | ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fzo 10300 | . 2 ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | |
| 2 | 1 | elmpocl1 6165 | 1 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2178 (class class class)co 5967 1c1 7961 − cmin 8278 ℤcz 9407 ...cfz 10165 ..^cfzo 10299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-fzo 10300 |
| This theorem is referenced by: elfzoelz 10304 fzoval 10305 elfzo2 10307 elfzole1 10313 elfzolt2 10314 elfzolt3 10315 elfzolt3b 10317 fzospliti 10335 fzoaddel 10353 elincfzoext 10359 fzosubel 10360 fzosubel3 10362 fzofzp1 10393 fzostep1 10403 fzomaxdiflem 11538 fzocongeq 12284 |
| Copyright terms: Public domain | W3C validator |