ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzoel1 GIF version

Theorem elfzoel1 10267
Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
elfzoel1 (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ)

Proof of Theorem elfzoel1
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fzo 10265 . 2 ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1)))
21elmpocl1 6142 1 (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2176  (class class class)co 5944  1c1 7926  cmin 8243  cz 9372  ...cfz 10130  ..^cfzo 10264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-fzo 10265
This theorem is referenced by:  elfzoelz  10269  fzoval  10270  elfzo2  10272  elfzole1  10278  elfzolt2  10279  elfzolt3  10280  elfzolt3b  10282  fzospliti  10300  fzoaddel  10316  elincfzoext  10322  fzosubel  10323  fzosubel3  10325  fzofzp1  10356  fzostep1  10366  fzomaxdiflem  11423  fzocongeq  12169
  Copyright terms: Public domain W3C validator