HomeHome Intuitionistic Logic Explorer
Theorem List (p. 102 of 113)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10101-10200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Syntaxcim 10101 Extend class notation to include imaginary part of a complex number.
class
 
Definitiondf-cj 10102* Define the complex conjugate function. See cjcli 10173 for its closure and cjval 10105 for its value. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
∗ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥𝑦)) ∈ ℝ)))
 
Definitiondf-re 10103 Define a function whose value is the real part of a complex number. See reval 10109 for its value, recli 10171 for its closure, and replim 10119 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.)
ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2))
 
Definitiondf-im 10104 Define a function whose value is the imaginary part of a complex number. See imval 10110 for its value, imcli 10172 for its closure, and replim 10119 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.)
ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i)))
 
Theoremcjval 10105* The value of the conjugate of a complex number. (Contributed by Mario Carneiro, 6-Nov-2013.)
(𝐴 ∈ ℂ → (∗‘𝐴) = (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)))
 
Theoremcjth 10106 The defining property of the complex conjugate. (Contributed by Mario Carneiro, 6-Nov-2013.)
(𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ))
 
Theoremcjf 10107 Domain and codomain of the conjugate function. (Contributed by Mario Carneiro, 6-Nov-2013.)
∗:ℂ⟶ℂ
 
Theoremcjcl 10108 The conjugate of a complex number is a complex number (closure law). (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
(𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
 
Theoremreval 10109 The value of the real part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
(𝐴 ∈ ℂ → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2))
 
Theoremimval 10110 The value of the imaginary part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
(𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(𝐴 / i)))
 
Theoremimre 10111 The imaginary part of a complex number in terms of the real part function. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 6-Nov-2013.)
(𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴)))
 
Theoremreim 10112 The real part of a complex number in terms of the imaginary part function. (Contributed by Mario Carneiro, 31-Mar-2015.)
(𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
 
Theoremrecl 10113 The real part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
(𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
 
Theoremimcl 10114 The imaginary part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
(𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
 
Theoremref 10115 Domain and codomain of the real part function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.)
ℜ:ℂ⟶ℝ
 
Theoremimf 10116 Domain and codomain of the imaginary part function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.)
ℑ:ℂ⟶ℝ
 
Theoremcrre 10117 The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴)
 
Theoremcrim 10118 The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵)
 
Theoremreplim 10119 Reconstruct a complex number from its real and imaginary parts. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
(𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
 
Theoremremim 10120 Value of the conjugate of a complex number. The value is the real part minus i times the imaginary part. Definition 10-3.2 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
(𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
 
Theoremreim0 10121 The imaginary part of a real number is 0. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
(𝐴 ∈ ℝ → (ℑ‘𝐴) = 0)
 
Theoremreim0b 10122 A number is real iff its imaginary part is 0. (Contributed by NM, 26-Sep-2005.)
(𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
 
Theoremrereb 10123 A number is real iff it equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 20-Aug-2008.)
(𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴))
 
Theoremmulreap 10124 A product with a real multiplier apart from zero is real iff the multiplicand is real. (Contributed by Jim Kingdon, 14-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (𝐴 ∈ ℝ ↔ (𝐵 · 𝐴) ∈ ℝ))
 
Theoremrere 10125 A real number equals its real part. One direction of Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Paul Chapman, 7-Sep-2007.)
(𝐴 ∈ ℝ → (ℜ‘𝐴) = 𝐴)
 
Theoremcjreb 10126 A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (∗‘𝐴) = 𝐴))
 
Theoremrecj 10127 Real part of a complex conjugate. (Contributed by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴))
 
Theoremreneg 10128 Real part of negative. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (ℜ‘-𝐴) = -(ℜ‘𝐴))
 
Theoremreadd 10129 Real part distributes over addition. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵)))
 
Theoremresub 10130 Real part distributes over subtraction. (Contributed by NM, 17-Mar-2005.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵)))
 
Theoremremullem 10131 Lemma for remul 10132, immul 10139, and cjmul 10145. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∧ (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∧ (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))))
 
Theoremremul 10132 Real part of a product. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
 
Theoremremul2 10133 Real part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (𝐴 · (ℜ‘𝐵)))
 
Theoremredivap 10134 Real part of a division. Related to remul2 10133. (Contributed by Jim Kingdon, 14-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (ℜ‘(𝐴 / 𝐵)) = ((ℜ‘𝐴) / 𝐵))
 
Theoremimcj 10135 Imaginary part of a complex conjugate. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴))
 
Theoremimneg 10136 The imaginary part of a negative number. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (ℑ‘-𝐴) = -(ℑ‘𝐴))
 
Theoremimadd 10137 Imaginary part distributes over addition. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵)))
 
Theoremimsub 10138 Imaginary part distributes over subtraction. (Contributed by NM, 18-Mar-2005.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵)))
 
Theoremimmul 10139 Imaginary part of a product. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))
 
Theoremimmul2 10140 Imaginary part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (𝐴 · (ℑ‘𝐵)))
 
Theoremimdivap 10141 Imaginary part of a division. Related to immul2 10140. (Contributed by Jim Kingdon, 14-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (ℑ‘(𝐴 / 𝐵)) = ((ℑ‘𝐴) / 𝐵))
 
Theoremcjre 10142 A real number equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 8-Oct-1999.)
(𝐴 ∈ ℝ → (∗‘𝐴) = 𝐴)
 
Theoremcjcj 10143 The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (∗‘(∗‘𝐴)) = 𝐴)
 
Theoremcjadd 10144 Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵)))
 
Theoremcjmul 10145 Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Mario Carneiro, 14-Jul-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵)))
 
Theoremipcnval 10146 Standard inner product on complex numbers. (Contributed by NM, 29-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵))))
 
Theoremcjmulrcl 10147 A complex number times its conjugate is real. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) ∈ ℝ)
 
Theoremcjmulval 10148 A complex number times its conjugate. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
 
Theoremcjmulge0 10149 A complex number times its conjugate is nonnegative. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → 0 ≤ (𝐴 · (∗‘𝐴)))
 
Theoremcjneg 10150 Complex conjugate of negative. (Contributed by NM, 27-Feb-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (∗‘-𝐴) = -(∗‘𝐴))
 
Theoremaddcj 10151 A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by NM, 21-Jan-2007.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (𝐴 + (∗‘𝐴)) = (2 · (ℜ‘𝐴)))
 
Theoremcjsub 10152 Complex conjugate distributes over subtraction. (Contributed by NM, 28-Apr-2005.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴𝐵)) = ((∗‘𝐴) − (∗‘𝐵)))
 
Theoremcjexp 10153 Complex conjugate of positive integer exponentiation. (Contributed by NM, 7-Jun-2006.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (∗‘(𝐴𝑁)) = ((∗‘𝐴)↑𝑁))
 
Theoremimval2 10154 The imaginary part of a number in terms of complex conjugate. (Contributed by NM, 30-Apr-2005.)
(𝐴 ∈ ℂ → (ℑ‘𝐴) = ((𝐴 − (∗‘𝐴)) / (2 · i)))
 
Theoremre0 10155 The real part of zero. (Contributed by NM, 27-Jul-1999.)
(ℜ‘0) = 0
 
Theoremim0 10156 The imaginary part of zero. (Contributed by NM, 27-Jul-1999.)
(ℑ‘0) = 0
 
Theoremre1 10157 The real part of one. (Contributed by Scott Fenton, 9-Jun-2006.)
(ℜ‘1) = 1
 
Theoremim1 10158 The imaginary part of one. (Contributed by Scott Fenton, 9-Jun-2006.)
(ℑ‘1) = 0
 
Theoremrei 10159 The real part of i. (Contributed by Scott Fenton, 9-Jun-2006.)
(ℜ‘i) = 0
 
Theoremimi 10160 The imaginary part of i. (Contributed by Scott Fenton, 9-Jun-2006.)
(ℑ‘i) = 1
 
Theoremcj0 10161 The conjugate of zero. (Contributed by NM, 27-Jul-1999.)
(∗‘0) = 0
 
Theoremcji 10162 The complex conjugate of the imaginary unit. (Contributed by NM, 26-Mar-2005.)
(∗‘i) = -i
 
Theoremcjreim 10163 The conjugate of a representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) = (𝐴 − (i · 𝐵)))
 
Theoremcjreim2 10164 The conjugate of the representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 − (i · 𝐵))) = (𝐴 + (i · 𝐵)))
 
Theoremcj11 10165 Complex conjugate is a one-to-one function. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Eric Schmidt, 2-Jul-2009.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) = (∗‘𝐵) ↔ 𝐴 = 𝐵))
 
Theoremcjap 10166 Complex conjugate and apartness. (Contributed by Jim Kingdon, 14-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) # (∗‘𝐵) ↔ 𝐴 # 𝐵))
 
Theoremcjap0 10167 A number is apart from zero iff its complex conjugate is apart from zero. (Contributed by Jim Kingdon, 14-Jun-2020.)
(𝐴 ∈ ℂ → (𝐴 # 0 ↔ (∗‘𝐴) # 0))
 
Theoremcjne0 10168 A number is nonzero iff its complex conjugate is nonzero. Also see cjap0 10167 which is similar but for apartness. (Contributed by NM, 29-Apr-2005.)
(𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ (∗‘𝐴) ≠ 0))
 
Theoremcjdivap 10169 Complex conjugate distributes over division. (Contributed by Jim Kingdon, 14-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵)))
 
Theoremcnrecnv 10170* The inverse to the canonical bijection from (ℝ × ℝ) to from cnref1o 9027. (Contributed by Mario Carneiro, 25-Aug-2014.)
𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))       𝐹 = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
 
Theoremrecli 10171 The real part of a complex number is real (closure law). (Contributed by NM, 11-May-1999.)
𝐴 ∈ ℂ       (ℜ‘𝐴) ∈ ℝ
 
Theoremimcli 10172 The imaginary part of a complex number is real (closure law). (Contributed by NM, 11-May-1999.)
𝐴 ∈ ℂ       (ℑ‘𝐴) ∈ ℝ
 
Theoremcjcli 10173 Closure law for complex conjugate. (Contributed by NM, 11-May-1999.)
𝐴 ∈ ℂ       (∗‘𝐴) ∈ ℂ
 
Theoremreplimi 10174 Construct a complex number from its real and imaginary parts. (Contributed by NM, 1-Oct-1999.)
𝐴 ∈ ℂ       𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))
 
Theoremcjcji 10175 The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by NM, 11-May-1999.)
𝐴 ∈ ℂ       (∗‘(∗‘𝐴)) = 𝐴
 
Theoremreim0bi 10176 A number is real iff its imaginary part is 0. (Contributed by NM, 29-May-1999.)
𝐴 ∈ ℂ       (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)
 
Theoremrerebi 10177 A real number equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 27-Oct-1999.)
𝐴 ∈ ℂ       (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴)
 
Theoremcjrebi 10178 A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 11-Oct-1999.)
𝐴 ∈ ℂ       (𝐴 ∈ ℝ ↔ (∗‘𝐴) = 𝐴)
 
Theoremrecji 10179 Real part of a complex conjugate. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴)
 
Theoremimcji 10180 Imaginary part of a complex conjugate. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴)
 
Theoremcjmulrcli 10181 A complex number times its conjugate is real. (Contributed by NM, 11-May-1999.)
𝐴 ∈ ℂ       (𝐴 · (∗‘𝐴)) ∈ ℝ
 
Theoremcjmulvali 10182 A complex number times its conjugate. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       (𝐴 · (∗‘𝐴)) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))
 
Theoremcjmulge0i 10183 A complex number times its conjugate is nonnegative. (Contributed by NM, 28-May-1999.)
𝐴 ∈ ℂ       0 ≤ (𝐴 · (∗‘𝐴))
 
Theoremrenegi 10184 Real part of negative. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℂ       (ℜ‘-𝐴) = -(ℜ‘𝐴)
 
Theoremimnegi 10185 Imaginary part of negative. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℂ       (ℑ‘-𝐴) = -(ℑ‘𝐴)
 
Theoremcjnegi 10186 Complex conjugate of negative. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℂ       (∗‘-𝐴) = -(∗‘𝐴)
 
Theoremaddcji 10187 A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       (𝐴 + (∗‘𝐴)) = (2 · (ℜ‘𝐴))
 
Theoremreaddi 10188 Real part distributes over addition. (Contributed by NM, 28-Jul-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵))
 
Theoremimaddi 10189 Imaginary part distributes over addition. (Contributed by NM, 28-Jul-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵))
 
Theoremremuli 10190 Real part of a product. (Contributed by NM, 28-Jul-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵)))
 
Theoremimmuli 10191 Imaginary part of a product. (Contributed by NM, 28-Jul-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))
 
Theoremcjaddi 10192 Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵))
 
Theoremcjmuli 10193 Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))
 
Theoremipcni 10194 Standard inner product on complex numbers. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵)))
 
Theoremcjdivapi 10195 Complex conjugate distributes over division. (Contributed by Jim Kingdon, 14-Jun-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐵 # 0 → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵)))
 
Theoremcrrei 10196 The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴
 
Theoremcrimi 10197 The imaginary part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵
 
Theoremrecld 10198 The real part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (ℜ‘𝐴) ∈ ℝ)
 
Theoremimcld 10199 The imaginary part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (ℑ‘𝐴) ∈ ℝ)
 
Theoremcjcld 10200 Closure law for complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (∗‘𝐴) ∈ ℂ)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11237
  Copyright terms: Public domain < Previous  Next >