| Intuitionistic Logic Explorer Theorem List (p. 102 of 158) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | elfzelzd 10101 | A member of a finite set of sequential integers is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) ⇒ ⊢ (𝜑 → 𝐾 ∈ ℤ) | ||
| Theorem | elfzle1 10102 | A member of a finite set of sequential integer is greater than or equal to the lower bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝐾) | ||
| Theorem | elfzle2 10103 | A member of a finite set of sequential integer is less than or equal to the upper bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ≤ 𝑁) | ||
| Theorem | elfzuz2 10104 | Implication of membership in a finite set of sequential integers. (Contributed by NM, 20-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝑀)) | ||
| Theorem | elfzle3 10105 | Membership in a finite set of sequential integer implies the bounds are comparable. (Contributed by NM, 18-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝑁) | ||
| Theorem | eluzfz1 10106 | Membership in a finite set of sequential integers - special case. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | ||
| Theorem | eluzfz2 10107 | Membership in a finite set of sequential integers - special case. (Contributed by NM, 13-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) | ||
| Theorem | eluzfz2b 10108 | Membership in a finite set of sequential integers - special case. (Contributed by NM, 14-Sep-2005.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑁 ∈ (𝑀...𝑁)) | ||
| Theorem | elfz3 10109 | Membership in a finite set of sequential integers containing one integer. (Contributed by NM, 21-Jul-2005.) |
| ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ (𝑁...𝑁)) | ||
| Theorem | elfz1eq 10110 | Membership in a finite set of sequential integers containing one integer. (Contributed by NM, 19-Sep-2005.) |
| ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝐾 = 𝑁) | ||
| Theorem | elfzubelfz 10111 | If there is a member in a finite set of sequential integers, the upper bound is also a member of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 31-May-2018.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (𝑀...𝑁)) | ||
| Theorem | peano2fzr 10112 | A Peano-postulate-like theorem for downward closure of a finite set of sequential integers. (Contributed by Mario Carneiro, 27-May-2014.) |
| ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ (𝐾 + 1) ∈ (𝑀...𝑁)) → 𝐾 ∈ (𝑀...𝑁)) | ||
| Theorem | fzm 10113* | Properties of a finite interval of integers which is inhabited. (Contributed by Jim Kingdon, 15-Apr-2020.) |
| ⊢ (∃𝑥 𝑥 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (ℤ≥‘𝑀)) | ||
| Theorem | fztri3or 10114 | Trichotomy in terms of a finite interval of integers. (Contributed by Jim Kingdon, 1-Jun-2020.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 ∨ 𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾)) | ||
| Theorem | fzdcel 10115 | Decidability of membership in a finite interval of integers. (Contributed by Jim Kingdon, 1-Jun-2020.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐾 ∈ (𝑀...𝑁)) | ||
| Theorem | fznlem 10116 | A finite set of sequential integers is empty if the bounds are reversed. (Contributed by Jim Kingdon, 16-Apr-2020.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 → (𝑀...𝑁) = ∅)) | ||
| Theorem | fzn 10117 | A finite set of sequential integers is empty if the bounds are reversed. (Contributed by NM, 22-Aug-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅)) | ||
| Theorem | fzen 10118 | A shifted finite set of sequential integers is equinumerous to the original set. (Contributed by Paul Chapman, 11-Apr-2009.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀...𝑁) ≈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) | ||
| Theorem | fz1n 10119 | A 1-based finite set of sequential integers is empty iff it ends at index 0. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ (𝑁 ∈ ℕ0 → ((1...𝑁) = ∅ ↔ 𝑁 = 0)) | ||
| Theorem | 0fz1 10120 | Two ways to say a finite 1-based sequence is empty. (Contributed by Paul Chapman, 26-Oct-2012.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 Fn (1...𝑁)) → (𝐹 = ∅ ↔ 𝑁 = 0)) | ||
| Theorem | fz10 10121 | There are no integers between 1 and 0. (Contributed by Jeff Madsen, 16-Jun-2010.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (1...0) = ∅ | ||
| Theorem | uzsubsubfz 10122 | Membership of an integer greater than L decreased by ( L - M ) in an M based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.) |
| ⊢ ((𝐿 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐿)) → (𝑁 − (𝐿 − 𝑀)) ∈ (𝑀...𝑁)) | ||
| Theorem | uzsubsubfz1 10123 | Membership of an integer greater than L decreased by ( L - 1 ) in a 1 based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.) |
| ⊢ ((𝐿 ∈ ℕ ∧ 𝑁 ∈ (ℤ≥‘𝐿)) → (𝑁 − (𝐿 − 1)) ∈ (1...𝑁)) | ||
| Theorem | ige3m2fz 10124 | Membership of an integer greater than 2 decreased by 2 in a 1 based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.) |
| ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 − 2) ∈ (1...𝑁)) | ||
| Theorem | fzsplit2 10125 | Split a finite interval of integers into two parts. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ (((𝐾 + 1) ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → (𝑀...𝑁) = ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁))) | ||
| Theorem | fzsplit 10126 | Split a finite interval of integers into two parts. (Contributed by Jeff Madsen, 17-Jun-2010.) (Revised by Mario Carneiro, 13-Apr-2016.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁))) | ||
| Theorem | fzdisj 10127 | Condition for two finite intervals of integers to be disjoint. (Contributed by Jeff Madsen, 17-Jun-2010.) |
| ⊢ (𝐾 < 𝑀 → ((𝐽...𝐾) ∩ (𝑀...𝑁)) = ∅) | ||
| Theorem | fz01en 10128 | 0-based and 1-based finite sets of sequential integers are equinumerous. (Contributed by Paul Chapman, 11-Apr-2009.) |
| ⊢ (𝑁 ∈ ℤ → (0...(𝑁 − 1)) ≈ (1...𝑁)) | ||
| Theorem | elfznn 10129 | A member of a finite set of sequential integers starting at 1 is a positive integer. (Contributed by NM, 24-Aug-2005.) |
| ⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ) | ||
| Theorem | elfz1end 10130 | A nonempty finite range of integers contains its end point. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ (𝐴 ∈ ℕ ↔ 𝐴 ∈ (1...𝐴)) | ||
| Theorem | fz1ssnn 10131 | A finite set of positive integers is a set of positive integers. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| ⊢ (1...𝐴) ⊆ ℕ | ||
| Theorem | fznn0sub 10132 | Subtraction closure for a member of a finite set of sequential integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑁 − 𝐾) ∈ ℕ0) | ||
| Theorem | fzmmmeqm 10133 | Subtracting the difference of a member of a finite range of integers and the lower bound of the range from the difference of the upper bound and the lower bound of the range results in the difference of the upper bound of the range and the member. (Contributed by Alexander van der Vekens, 27-May-2018.) |
| ⊢ (𝑀 ∈ (𝐿...𝑁) → ((𝑁 − 𝐿) − (𝑀 − 𝐿)) = (𝑁 − 𝑀)) | ||
| Theorem | fzaddel 10134 | Membership of a sum in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005.) |
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))) | ||
| Theorem | fzsubel 10135 | Membership of a difference in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005.) |
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 − 𝐾) ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾)))) | ||
| Theorem | fzopth 10136 | A finite set of sequential integers can represent an ordered pair. (Contributed by NM, 31-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀...𝑁) = (𝐽...𝐾) ↔ (𝑀 = 𝐽 ∧ 𝑁 = 𝐾))) | ||
| Theorem | fzass4 10137 | Two ways to express a nondecreasing sequence of four integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ ((𝐵 ∈ (𝐴...𝐷) ∧ 𝐶 ∈ (𝐵...𝐷)) ↔ (𝐵 ∈ (𝐴...𝐶) ∧ 𝐶 ∈ (𝐴...𝐷))) | ||
| Theorem | fzss1 10138 | Subset relationship for finite sets of sequential integers. (Contributed by NM, 28-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) | ||
| Theorem | fzss2 10139 | Subset relationship for finite sets of sequential integers. (Contributed by NM, 4-Oct-2005.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀...𝐾) ⊆ (𝑀...𝑁)) | ||
| Theorem | fzssuz 10140 | A finite set of sequential integers is a subset of an upper set of integers. (Contributed by NM, 28-Oct-2005.) |
| ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) | ||
| Theorem | fzsn 10141 | A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) | ||
| Theorem | fzssp1 10142 | Subset relationship for finite sets of sequential integers. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1)) | ||
| Theorem | fzssnn 10143 | Finite sets of sequential integers starting from a natural are a subset of the positive integers. (Contributed by Thierry Arnoux, 4-Aug-2017.) |
| ⊢ (𝑀 ∈ ℕ → (𝑀...𝑁) ⊆ ℕ) | ||
| Theorem | fzsuc 10144 | Join a successor to the end of a finite set of sequential integers. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) | ||
| Theorem | fzpred 10145 | Join a predecessor to the beginning of a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = ({𝑀} ∪ ((𝑀 + 1)...𝑁))) | ||
| Theorem | fzpreddisj 10146 | A finite set of sequential integers is disjoint with its predecessor. (Contributed by AV, 24-Aug-2019.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅) | ||
| Theorem | elfzp1 10147 | Append an element to a finite set of sequential integers. (Contributed by NM, 19-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...(𝑁 + 1)) ↔ (𝐾 ∈ (𝑀...𝑁) ∨ 𝐾 = (𝑁 + 1)))) | ||
| Theorem | fzp1ss 10148 | Subset relationship for finite sets of sequential integers. (Contributed by NM, 26-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁)) | ||
| Theorem | fzelp1 10149 | Membership in a set of sequential integers with an appended element. (Contributed by NM, 7-Dec-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (𝑀...(𝑁 + 1))) | ||
| Theorem | fzp1elp1 10150 | Add one to an element of a finite set of integers. (Contributed by Jeff Madsen, 6-Jun-2010.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 + 1) ∈ (𝑀...(𝑁 + 1))) | ||
| Theorem | fznatpl1 10151 | Shift membership in a finite sequence of naturals. (Contributed by Scott Fenton, 17-Jul-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁)) | ||
| Theorem | fzpr 10152 | A finite interval of integers with two elements. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)}) | ||
| Theorem | fztp 10153 | A finite interval of integers with three elements. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 7-Mar-2014.) |
| ⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 + 2)) = {𝑀, (𝑀 + 1), (𝑀 + 2)}) | ||
| Theorem | fzsuc2 10154 | Join a successor to the end of a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Mar-2014.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 − 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) | ||
| Theorem | fzp1disj 10155 | (𝑀...(𝑁 + 1)) is the disjoint union of (𝑀...𝑁) with {(𝑁 + 1)}. (Contributed by Mario Carneiro, 7-Mar-2014.) |
| ⊢ ((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅ | ||
| Theorem | fzdifsuc 10156 | Remove a successor from the end of a finite set of sequential integers. (Contributed by AV, 4-Sep-2019.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)})) | ||
| Theorem | fzprval 10157* | Two ways of defining the first two values of a sequence on ℕ. (Contributed by NM, 5-Sep-2011.) |
| ⊢ (∀𝑥 ∈ (1...2)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵)) | ||
| Theorem | fztpval 10158* | Two ways of defining the first three values of a sequence on ℕ. (Contributed by NM, 13-Sep-2011.) |
| ⊢ (∀𝑥 ∈ (1...3)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵 ∧ (𝐹‘3) = 𝐶)) | ||
| Theorem | fzrev 10159 | Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.) |
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ ((𝐽 − 𝑁)...(𝐽 − 𝑀)) ↔ (𝐽 − 𝐾) ∈ (𝑀...𝑁))) | ||
| Theorem | fzrev2 10160 | Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.) |
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐽 − 𝐾) ∈ ((𝐽 − 𝑁)...(𝐽 − 𝑀)))) | ||
| Theorem | fzrev2i 10161 | Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.) |
| ⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐽 − 𝐾) ∈ ((𝐽 − 𝑁)...(𝐽 − 𝑀))) | ||
| Theorem | fzrev3 10162 | The "complement" of a member of a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.) |
| ⊢ (𝐾 ∈ ℤ → (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁))) | ||
| Theorem | fzrev3i 10163 | The "complement" of a member of a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁)) | ||
| Theorem | fznn 10164 | Finite set of sequential integers starting at 1. (Contributed by NM, 31-Aug-2011.) (Revised by Mario Carneiro, 18-Jun-2015.) |
| ⊢ (𝑁 ∈ ℤ → (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝐾 ≤ 𝑁))) | ||
| Theorem | elfz1b 10165 | Membership in a 1 based finite set of sequential integers. (Contributed by AV, 30-Oct-2018.) |
| ⊢ (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀)) | ||
| Theorem | elfzm11 10166 | Membership in a finite set of sequential integers. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) | ||
| Theorem | uzsplit 10167 | Express an upper integer set as the disjoint (see uzdisj 10168) union of the first 𝑁 values and the rest. (Contributed by Mario Carneiro, 24-Apr-2014.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑀) = ((𝑀...(𝑁 − 1)) ∪ (ℤ≥‘𝑁))) | ||
| Theorem | uzdisj 10168 | The first 𝑁 elements of an upper integer set are distinct from any later members. (Contributed by Mario Carneiro, 24-Apr-2014.) |
| ⊢ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) = ∅ | ||
| Theorem | fseq1p1m1 10169 | Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 7-Mar-2014.) |
| ⊢ 𝐻 = {〈(𝑁 + 1), 𝐵〉} ⇒ ⊢ (𝑁 ∈ ℕ0 → ((𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻)) ↔ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁))))) | ||
| Theorem | fseq1m1p1 10170 | Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.) |
| ⊢ 𝐻 = {〈𝑁, 𝐵〉} ⇒ ⊢ (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻)) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺‘𝑁) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))))) | ||
| Theorem | fz1sbc 10171* | Quantification over a one-member finite set of sequential integers in terms of substitution. (Contributed by NM, 28-Nov-2005.) |
| ⊢ (𝑁 ∈ ℤ → (∀𝑘 ∈ (𝑁...𝑁)𝜑 ↔ [𝑁 / 𝑘]𝜑)) | ||
| Theorem | elfzp1b 10172 | An integer is a member of a 0-based finite set of sequential integers iff its successor is a member of the corresponding 1-based set. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...(𝑁 − 1)) ↔ (𝐾 + 1) ∈ (1...𝑁))) | ||
| Theorem | elfzm1b 10173 | An integer is a member of a 1-based finite set of sequential integers iff its predecessor is a member of the corresponding 0-based set. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (1...𝑁) ↔ (𝐾 − 1) ∈ (0...(𝑁 − 1)))) | ||
| Theorem | elfzp12 10174 | Options for membership in a finite interval of integers. (Contributed by Jeff Madsen, 18-Jun-2010.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 = 𝑀 ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁)))) | ||
| Theorem | fzm1 10175 | Choices for an element of a finite interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁))) | ||
| Theorem | fzneuz 10176 | No finite set of sequential integers equals an upper set of integers. (Contributed by NM, 11-Dec-2005.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → ¬ (𝑀...𝑁) = (ℤ≥‘𝐾)) | ||
| Theorem | fznuz 10177 | Disjointness of the upper integers and a finite sequence. (Contributed by Mario Carneiro, 30-Jun-2013.) (Revised by Mario Carneiro, 24-Aug-2013.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → ¬ 𝐾 ∈ (ℤ≥‘(𝑁 + 1))) | ||
| Theorem | uznfz 10178 | Disjointness of the upper integers and a finite sequence. (Contributed by Mario Carneiro, 24-Aug-2013.) |
| ⊢ (𝐾 ∈ (ℤ≥‘𝑁) → ¬ 𝐾 ∈ (𝑀...(𝑁 − 1))) | ||
| Theorem | fzp1nel 10179 | One plus the upper bound of a finite set of integers is not a member of that set. (Contributed by Scott Fenton, 16-Dec-2017.) |
| ⊢ ¬ (𝑁 + 1) ∈ (𝑀...𝑁) | ||
| Theorem | fzrevral 10180* | Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))[(𝐾 − 𝑘) / 𝑗]𝜑)) | ||
| Theorem | fzrevral2 10181* | Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[(𝐾 − 𝑘) / 𝑗]𝜑)) | ||
| Theorem | fzrevral3 10182* | Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[((𝑀 + 𝑁) − 𝑘) / 𝑗]𝜑)) | ||
| Theorem | fzshftral 10183* | Shift the scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 27-Nov-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘 − 𝐾) / 𝑗]𝜑)) | ||
| Theorem | ige2m1fz1 10184 | Membership of an integer greater than 1 decreased by 1 in a 1 based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ (1...𝑁)) | ||
| Theorem | ige2m1fz 10185 | Membership in a 0 based finite set of sequential integers. (Contributed by Alexander van der Vekens, 18-Jun-2018.) (Proof shortened by Alexander van der Vekens, 15-Sep-2018.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ (0...𝑁)) | ||
| Theorem | fz01or 10186 | An integer is in the integer range from zero to one iff it is either zero or one. (Contributed by Jim Kingdon, 11-Nov-2021.) |
| ⊢ (𝐴 ∈ (0...1) ↔ (𝐴 = 0 ∨ 𝐴 = 1)) | ||
Finite intervals of nonnegative integers (or "finite sets of sequential nonnegative integers") are finite intervals of integers with 0 as lower bound: (0...𝑁), usually abbreviated by "fz0". | ||
| Theorem | elfz2nn0 10187 | Membership in a finite set of sequential nonnegative integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) | ||
| Theorem | fznn0 10188 | Characterization of a finite set of sequential nonnegative integers. (Contributed by NM, 1-Aug-2005.) |
| ⊢ (𝑁 ∈ ℕ0 → (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁))) | ||
| Theorem | elfznn0 10189 | A member of a finite set of sequential nonnegative integers is a nonnegative integer. (Contributed by NM, 5-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0) | ||
| Theorem | elfz3nn0 10190 | The upper bound of a nonempty finite set of sequential nonnegative integers is a nonnegative integer. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0) | ||
| Theorem | fz0ssnn0 10191 | Finite sets of sequential nonnegative integers starting with 0 are subsets of NN0. (Contributed by JJ, 1-Jun-2021.) |
| ⊢ (0...𝑁) ⊆ ℕ0 | ||
| Theorem | fz1ssfz0 10192 | Subset relationship for finite sets of sequential integers. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ (1...𝑁) ⊆ (0...𝑁) | ||
| Theorem | 0elfz 10193 | 0 is an element of a finite set of sequential nonnegative integers with a nonnegative integer as upper bound. (Contributed by AV, 6-Apr-2018.) |
| ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) | ||
| Theorem | nn0fz0 10194 | A nonnegative integer is always part of the finite set of sequential nonnegative integers with this integer as upper bound. (Contributed by Scott Fenton, 21-Mar-2018.) |
| ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (0...𝑁)) | ||
| Theorem | elfz0add 10195 | An element of a finite set of sequential nonnegative integers is an element of an extended finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 28-Mar-2018.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝑁 ∈ (0...𝐴) → 𝑁 ∈ (0...(𝐴 + 𝐵)))) | ||
| Theorem | fz0sn 10196 | An integer range from 0 to 0 is a singleton. (Contributed by AV, 18-Apr-2021.) |
| ⊢ (0...0) = {0} | ||
| Theorem | fz0tp 10197 | An integer range from 0 to 2 is an unordered triple. (Contributed by Alexander van der Vekens, 1-Feb-2018.) |
| ⊢ (0...2) = {0, 1, 2} | ||
| Theorem | fz0to3un2pr 10198 | An integer range from 0 to 3 is the union of two unordered pairs. (Contributed by AV, 7-Feb-2021.) |
| ⊢ (0...3) = ({0, 1} ∪ {2, 3}) | ||
| Theorem | fz0to4untppr 10199 | An integer range from 0 to 4 is the union of a triple and a pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.) |
| ⊢ (0...4) = ({0, 1, 2} ∪ {3, 4}) | ||
| Theorem | elfz0ubfz0 10200 | An element of a finite set of sequential nonnegative integers is an element of a finite set of sequential nonnegative integers with the upper bound being an element of the finite set of sequential nonnegative integers with the same lower bound as for the first interval and the element under consideration as upper bound. (Contributed by Alexander van der Vekens, 3-Apr-2018.) |
| ⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → 𝐾 ∈ (0...𝐿)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |