HomeHome Intuitionistic Logic Explorer
Theorem List (p. 102 of 150)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10101-10200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremelfzp12 10101 Options for membership in a finite interval of integers. (Contributed by Jeff Madsen, 18-Jun-2010.)
(𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 = 𝑀 ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁))))
 
Theoremfzm1 10102 Choices for an element of a finite interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...(𝑁 βˆ’ 1)) ∨ 𝐾 = 𝑁)))
 
Theoremfzneuz 10103 No finite set of sequential integers equals an upper set of integers. (Contributed by NM, 11-Dec-2005.)
((𝑁 ∈ (β„€β‰₯β€˜π‘€) ∧ 𝐾 ∈ β„€) β†’ Β¬ (𝑀...𝑁) = (β„€β‰₯β€˜πΎ))
 
Theoremfznuz 10104 Disjointness of the upper integers and a finite sequence. (Contributed by Mario Carneiro, 30-Jun-2013.) (Revised by Mario Carneiro, 24-Aug-2013.)
(𝐾 ∈ (𝑀...𝑁) β†’ Β¬ 𝐾 ∈ (β„€β‰₯β€˜(𝑁 + 1)))
 
Theoremuznfz 10105 Disjointness of the upper integers and a finite sequence. (Contributed by Mario Carneiro, 24-Aug-2013.)
(𝐾 ∈ (β„€β‰₯β€˜π‘) β†’ Β¬ 𝐾 ∈ (𝑀...(𝑁 βˆ’ 1)))
 
Theoremfzp1nel 10106 One plus the upper bound of a finite set of integers is not a member of that set. (Contributed by Scott Fenton, 16-Dec-2017.)
Β¬ (𝑁 + 1) ∈ (𝑀...𝑁)
 
Theoremfzrevral 10107* Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
((𝑀 ∈ β„€ ∧ 𝑁 ∈ β„€ ∧ 𝐾 ∈ β„€) β†’ (βˆ€π‘— ∈ (𝑀...𝑁)πœ‘ ↔ βˆ€π‘˜ ∈ ((𝐾 βˆ’ 𝑁)...(𝐾 βˆ’ 𝑀))[(𝐾 βˆ’ π‘˜) / 𝑗]πœ‘))
 
Theoremfzrevral2 10108* Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
((𝑀 ∈ β„€ ∧ 𝑁 ∈ β„€ ∧ 𝐾 ∈ β„€) β†’ (βˆ€π‘— ∈ ((𝐾 βˆ’ 𝑁)...(𝐾 βˆ’ 𝑀))πœ‘ ↔ βˆ€π‘˜ ∈ (𝑀...𝑁)[(𝐾 βˆ’ π‘˜) / 𝑗]πœ‘))
 
Theoremfzrevral3 10109* Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.)
((𝑀 ∈ β„€ ∧ 𝑁 ∈ β„€) β†’ (βˆ€π‘— ∈ (𝑀...𝑁)πœ‘ ↔ βˆ€π‘˜ ∈ (𝑀...𝑁)[((𝑀 + 𝑁) βˆ’ π‘˜) / 𝑗]πœ‘))
 
Theoremfzshftral 10110* Shift the scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 27-Nov-2005.)
((𝑀 ∈ β„€ ∧ 𝑁 ∈ β„€ ∧ 𝐾 ∈ β„€) β†’ (βˆ€π‘— ∈ (𝑀...𝑁)πœ‘ ↔ βˆ€π‘˜ ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(π‘˜ βˆ’ 𝐾) / 𝑗]πœ‘))
 
Theoremige2m1fz1 10111 Membership of an integer greater than 1 decreased by 1 in a 1 based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.)
(𝑁 ∈ (β„€β‰₯β€˜2) β†’ (𝑁 βˆ’ 1) ∈ (1...𝑁))
 
Theoremige2m1fz 10112 Membership in a 0 based finite set of sequential integers. (Contributed by Alexander van der Vekens, 18-Jun-2018.) (Proof shortened by Alexander van der Vekens, 15-Sep-2018.)
((𝑁 ∈ β„•0 ∧ 2 ≀ 𝑁) β†’ (𝑁 βˆ’ 1) ∈ (0...𝑁))
 
Theoremfz01or 10113 An integer is in the integer range from zero to one iff it is either zero or one. (Contributed by Jim Kingdon, 11-Nov-2021.)
(𝐴 ∈ (0...1) ↔ (𝐴 = 0 ∨ 𝐴 = 1))
 
4.5.5  Finite intervals of nonnegative integers

Finite intervals of nonnegative integers (or "finite sets of sequential nonnegative integers") are finite intervals of integers with 0 as lower bound: (0...𝑁), usually abbreviated by "fz0".

 
Theoremelfz2nn0 10114 Membership in a finite set of sequential nonnegative integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ β„•0 ∧ 𝑁 ∈ β„•0 ∧ 𝐾 ≀ 𝑁))
 
Theoremfznn0 10115 Characterization of a finite set of sequential nonnegative integers. (Contributed by NM, 1-Aug-2005.)
(𝑁 ∈ β„•0 β†’ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ β„•0 ∧ 𝐾 ≀ 𝑁)))
 
Theoremelfznn0 10116 A member of a finite set of sequential nonnegative integers is a nonnegative integer. (Contributed by NM, 5-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (0...𝑁) β†’ 𝐾 ∈ β„•0)
 
Theoremelfz3nn0 10117 The upper bound of a nonempty finite set of sequential nonnegative integers is a nonnegative integer. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (0...𝑁) β†’ 𝑁 ∈ β„•0)
 
Theoremfz0ssnn0 10118 Finite sets of sequential nonnegative integers starting with 0 are subsets of NN0. (Contributed by JJ, 1-Jun-2021.)
(0...𝑁) βŠ† β„•0
 
Theoremfz1ssfz0 10119 Subset relationship for finite sets of sequential integers. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(1...𝑁) βŠ† (0...𝑁)
 
Theorem0elfz 10120 0 is an element of a finite set of sequential nonnegative integers with a nonnegative integer as upper bound. (Contributed by AV, 6-Apr-2018.)
(𝑁 ∈ β„•0 β†’ 0 ∈ (0...𝑁))
 
Theoremnn0fz0 10121 A nonnegative integer is always part of the finite set of sequential nonnegative integers with this integer as upper bound. (Contributed by Scott Fenton, 21-Mar-2018.)
(𝑁 ∈ β„•0 ↔ 𝑁 ∈ (0...𝑁))
 
Theoremelfz0add 10122 An element of a finite set of sequential nonnegative integers is an element of an extended finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 28-Mar-2018.) (Proof shortened by OpenAI, 25-Mar-2020.)
((𝐴 ∈ β„•0 ∧ 𝐡 ∈ β„•0) β†’ (𝑁 ∈ (0...𝐴) β†’ 𝑁 ∈ (0...(𝐴 + 𝐡))))
 
Theoremfz0sn 10123 An integer range from 0 to 0 is a singleton. (Contributed by AV, 18-Apr-2021.)
(0...0) = {0}
 
Theoremfz0tp 10124 An integer range from 0 to 2 is an unordered triple. (Contributed by Alexander van der Vekens, 1-Feb-2018.)
(0...2) = {0, 1, 2}
 
Theoremfz0to3un2pr 10125 An integer range from 0 to 3 is the union of two unordered pairs. (Contributed by AV, 7-Feb-2021.)
(0...3) = ({0, 1} βˆͺ {2, 3})
 
Theoremfz0to4untppr 10126 An integer range from 0 to 4 is the union of a triple and a pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.)
(0...4) = ({0, 1, 2} βˆͺ {3, 4})
 
Theoremelfz0ubfz0 10127 An element of a finite set of sequential nonnegative integers is an element of a finite set of sequential nonnegative integers with the upper bound being an element of the finite set of sequential nonnegative integers with the same lower bound as for the first interval and the element under consideration as upper bound. (Contributed by Alexander van der Vekens, 3-Apr-2018.)
((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) β†’ 𝐾 ∈ (0...𝐿))
 
Theoremelfz0fzfz0 10128 A member of a finite set of sequential nonnegative integers is a member of a finite set of sequential nonnegative integers with a member of a finite set of sequential nonnegative integers starting at the upper bound of the first interval. (Contributed by Alexander van der Vekens, 27-May-2018.)
((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) β†’ 𝑀 ∈ (0...𝑁))
 
Theoremfz0fzelfz0 10129 If a member of a finite set of sequential integers with a lower bound being a member of a finite set of sequential nonnegative integers with the same upper bound, this member is also a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 21-Apr-2018.)
((𝑁 ∈ (0...𝑅) ∧ 𝑀 ∈ (𝑁...𝑅)) β†’ 𝑀 ∈ (0...𝑅))
 
Theoremfznn0sub2 10130 Subtraction closure for a member of a finite set of sequential nonnegative integers. (Contributed by NM, 26-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (0...𝑁) β†’ (𝑁 βˆ’ 𝐾) ∈ (0...𝑁))
 
Theoremuzsubfz0 10131 Membership of an integer greater than L decreased by L in a finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
((𝐿 ∈ β„•0 ∧ 𝑁 ∈ (β„€β‰₯β€˜πΏ)) β†’ (𝑁 βˆ’ 𝐿) ∈ (0...𝑁))
 
Theoremfz0fzdiffz0 10132 The difference of an integer in a finite set of sequential nonnegative integers and and an integer of a finite set of sequential integers with the same upper bound and the nonnegative integer as lower bound is a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 6-Jun-2018.)
((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) β†’ (𝐾 βˆ’ 𝑀) ∈ (0...𝑁))
 
Theoremelfzmlbm 10133 Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.) (Proof shortened by OpenAI, 25-Mar-2020.)
(𝐾 ∈ (𝑀...𝑁) β†’ (𝐾 βˆ’ 𝑀) ∈ (0...(𝑁 βˆ’ 𝑀)))
 
Theoremelfzmlbp 10134 Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.)
((𝑁 ∈ β„€ ∧ 𝐾 ∈ (𝑀...(𝑀 + 𝑁))) β†’ (𝐾 βˆ’ 𝑀) ∈ (0...𝑁))
 
Theoremfzctr 10135 Lemma for theorems about the central binomial coefficient. (Contributed by Mario Carneiro, 8-Mar-2014.) (Revised by Mario Carneiro, 2-Aug-2014.)
(𝑁 ∈ β„•0 β†’ 𝑁 ∈ (0...(2 Β· 𝑁)))
 
Theoremdifelfzle 10136 The difference of two integers from a finite set of sequential nonnegative integers is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.)
((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾 ≀ 𝑀) β†’ (𝑀 βˆ’ 𝐾) ∈ (0...𝑁))
 
Theoremdifelfznle 10137 The difference of two integers from a finite set of sequential nonnegative integers increased by the upper bound is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.)
((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ Β¬ 𝐾 ≀ 𝑀) β†’ ((𝑀 + 𝑁) βˆ’ 𝐾) ∈ (0...𝑁))
 
Theoremnn0split 10138 Express the set of nonnegative integers as the disjoint (see nn0disj 10140) union of the first 𝑁 + 1 values and the rest. (Contributed by AV, 8-Nov-2019.)
(𝑁 ∈ β„•0 β†’ β„•0 = ((0...𝑁) βˆͺ (β„€β‰₯β€˜(𝑁 + 1))))
 
Theoremnnsplit 10139 Express the set of positive integers as the disjoint union of the first 𝑁 values and the rest. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
(𝑁 ∈ β„• β†’ β„• = ((1...𝑁) βˆͺ (β„€β‰₯β€˜(𝑁 + 1))))
 
Theoremnn0disj 10140 The first 𝑁 + 1 elements of the set of nonnegative integers are distinct from any later members. (Contributed by AV, 8-Nov-2019.)
((0...𝑁) ∩ (β„€β‰₯β€˜(𝑁 + 1))) = βˆ…
 
Theorem1fv 10141 A function on a singleton. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
((𝑁 ∈ 𝑉 ∧ 𝑃 = {⟨0, π‘βŸ©}) β†’ (𝑃:(0...0)βŸΆπ‘‰ ∧ (π‘ƒβ€˜0) = 𝑁))
 
Theorem4fvwrd4 10142* The first four function values of a word of length at least 4. (Contributed by Alexander van der Vekens, 18-Nov-2017.)
((𝐿 ∈ (β„€β‰₯β€˜3) ∧ 𝑃:(0...𝐿)βŸΆπ‘‰) β†’ βˆƒπ‘Ž ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 βˆƒπ‘‘ ∈ 𝑉 (((π‘ƒβ€˜0) = π‘Ž ∧ (π‘ƒβ€˜1) = 𝑏) ∧ ((π‘ƒβ€˜2) = 𝑐 ∧ (π‘ƒβ€˜3) = 𝑑)))
 
Theorem2ffzeq 10143* Two functions over 0 based finite set of sequential integers are equal if and only if their domains have the same length and the function values are the same at each position. (Contributed by Alexander van der Vekens, 30-Jun-2018.)
((𝑀 ∈ β„•0 ∧ 𝐹:(0...𝑀)βŸΆπ‘‹ ∧ 𝑃:(0...𝑁)βŸΆπ‘Œ) β†’ (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ βˆ€π‘– ∈ (0...𝑀)(πΉβ€˜π‘–) = (π‘ƒβ€˜π‘–))))
 
4.5.6  Half-open integer ranges
 
Syntaxcfzo 10144 Syntax for half-open integer ranges.
class ..^
 
Definitiondf-fzo 10145* Define a function generating sets of integers using a half-open range. Read (𝑀..^𝑁) as the integers from 𝑀 up to, but not including, 𝑁; contrast with (𝑀...𝑁) df-fz 10011, which includes 𝑁. Not including the endpoint simplifies a number of formulas related to cardinality and splitting; contrast fzosplit 10179 with fzsplit 10053, for instance. (Contributed by Stefan O'Rear, 14-Aug-2015.)
..^ = (π‘š ∈ β„€, 𝑛 ∈ β„€ ↦ (π‘š...(𝑛 βˆ’ 1)))
 
Theoremfzof 10146 Functionality of the half-open integer set function. (Contributed by Stefan O'Rear, 14-Aug-2015.)
..^:(β„€ Γ— β„€)βŸΆπ’« β„€
 
Theoremelfzoel1 10147 Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.)
(𝐴 ∈ (𝐡..^𝐢) β†’ 𝐡 ∈ β„€)
 
Theoremelfzoel2 10148 Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.)
(𝐴 ∈ (𝐡..^𝐢) β†’ 𝐢 ∈ β„€)
 
Theoremelfzoelz 10149 Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.)
(𝐴 ∈ (𝐡..^𝐢) β†’ 𝐴 ∈ β„€)
 
Theoremfzoval 10150 Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015.)
(𝑁 ∈ β„€ β†’ (𝑀..^𝑁) = (𝑀...(𝑁 βˆ’ 1)))
 
Theoremelfzo 10151 Membership in a half-open finite set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.)
((𝐾 ∈ β„€ ∧ 𝑀 ∈ β„€ ∧ 𝑁 ∈ β„€) β†’ (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀 ≀ 𝐾 ∧ 𝐾 < 𝑁)))
 
Theoremelfzo2 10152 Membership in a half-open integer interval. (Contributed by Mario Carneiro, 29-Sep-2015.)
(𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (β„€β‰₯β€˜π‘€) ∧ 𝑁 ∈ β„€ ∧ 𝐾 < 𝑁))
 
Theoremelfzouz 10153 Membership in a half-open integer interval. (Contributed by Mario Carneiro, 29-Sep-2015.)
(𝐾 ∈ (𝑀..^𝑁) β†’ 𝐾 ∈ (β„€β‰₯β€˜π‘€))
 
Theoremfzodcel 10154 Decidability of membership in a half-open integer interval. (Contributed by Jim Kingdon, 25-Aug-2022.)
((𝐾 ∈ β„€ ∧ 𝑀 ∈ β„€ ∧ 𝑁 ∈ β„€) β†’ DECID 𝐾 ∈ (𝑀..^𝑁))
 
Theoremfzolb 10155 The left endpoint of a half-open integer interval is in the set iff the two arguments are integers with 𝑀 < 𝑁. This provides an alternate notation for the "strict upper integer" predicate by analogy to the "weak upper integer" predicate 𝑀 ∈ (β„€β‰₯β€˜π‘). (Contributed by Mario Carneiro, 29-Sep-2015.)
(𝑀 ∈ (𝑀..^𝑁) ↔ (𝑀 ∈ β„€ ∧ 𝑁 ∈ β„€ ∧ 𝑀 < 𝑁))
 
Theoremfzolb2 10156 The left endpoint of a half-open integer interval is in the set iff the two arguments are integers with 𝑀 < 𝑁. This provides an alternate notation for the "strict upper integer" predicate by analogy to the "weak upper integer" predicate 𝑀 ∈ (β„€β‰₯β€˜π‘). (Contributed by Mario Carneiro, 29-Sep-2015.)
((𝑀 ∈ β„€ ∧ 𝑁 ∈ β„€) β†’ (𝑀 ∈ (𝑀..^𝑁) ↔ 𝑀 < 𝑁))
 
Theoremelfzole1 10157 A member in a half-open integer interval is greater than or equal to the lower bound. (Contributed by Stefan O'Rear, 15-Aug-2015.)
(𝐾 ∈ (𝑀..^𝑁) β†’ 𝑀 ≀ 𝐾)
 
Theoremelfzolt2 10158 A member in a half-open integer interval is less than the upper bound. (Contributed by Stefan O'Rear, 15-Aug-2015.)
(𝐾 ∈ (𝑀..^𝑁) β†’ 𝐾 < 𝑁)
 
Theoremelfzolt3 10159 Membership in a half-open integer interval implies that the bounds are unequal. (Contributed by Stefan O'Rear, 15-Aug-2015.)
(𝐾 ∈ (𝑀..^𝑁) β†’ 𝑀 < 𝑁)
 
Theoremelfzolt2b 10160 A member in a half-open integer interval is less than the upper bound. (Contributed by Mario Carneiro, 29-Sep-2015.)
(𝐾 ∈ (𝑀..^𝑁) β†’ 𝐾 ∈ (𝐾..^𝑁))
 
Theoremelfzolt3b 10161 Membership in a half-open integer interval implies that the bounds are unequal. (Contributed by Mario Carneiro, 29-Sep-2015.)
(𝐾 ∈ (𝑀..^𝑁) β†’ 𝑀 ∈ (𝑀..^𝑁))
 
Theoremfzonel 10162 A half-open range does not contain its right endpoint. (Contributed by Stefan O'Rear, 25-Aug-2015.)
¬ 𝐡 ∈ (𝐴..^𝐡)
 
Theoremelfzouz2 10163 The upper bound of a half-open range is greater or equal to an element of the range. (Contributed by Mario Carneiro, 29-Sep-2015.)
(𝐾 ∈ (𝑀..^𝑁) β†’ 𝑁 ∈ (β„€β‰₯β€˜πΎ))
 
Theoremelfzofz 10164 A half-open range is contained in the corresponding closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.)
(𝐾 ∈ (𝑀..^𝑁) β†’ 𝐾 ∈ (𝑀...𝑁))
 
Theoremelfzo3 10165 Express membership in a half-open integer interval in terms of the "less than or equal" and "less than" predicates on integers, resp. 𝐾 ∈ (β„€β‰₯β€˜π‘€) ↔ 𝑀 ≀ 𝐾, 𝐾 ∈ (𝐾..^𝑁) ↔ 𝐾 < 𝑁. (Contributed by Mario Carneiro, 29-Sep-2015.)
(𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (β„€β‰₯β€˜π‘€) ∧ 𝐾 ∈ (𝐾..^𝑁)))
 
Theoremfzom 10166* A half-open integer interval is inhabited iff it contains its left endpoint. (Contributed by Jim Kingdon, 20-Apr-2020.)
(βˆƒπ‘₯ π‘₯ ∈ (𝑀..^𝑁) ↔ 𝑀 ∈ (𝑀..^𝑁))
 
Theoremfzossfz 10167 A half-open range is contained in the corresponding closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
(𝐴..^𝐡) βŠ† (𝐴...𝐡)
 
Theoremfzon 10168 A half-open set of sequential integers is empty if the bounds are equal or reversed. (Contributed by Alexander van der Vekens, 30-Oct-2017.)
((𝑀 ∈ β„€ ∧ 𝑁 ∈ β„€) β†’ (𝑁 ≀ 𝑀 ↔ (𝑀..^𝑁) = βˆ…))
 
Theoremfzonlt0 10169 A half-open integer range is empty if the bounds are equal or reversed. (Contributed by AV, 20-Oct-2018.)
((𝑀 ∈ β„€ ∧ 𝑁 ∈ β„€) β†’ (Β¬ 𝑀 < 𝑁 ↔ (𝑀..^𝑁) = βˆ…))
 
Theoremfzo0 10170 Half-open sets with equal endpoints are empty. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
(𝐴..^𝐴) = βˆ…
 
Theoremfzonnsub 10171 If 𝐾 < 𝑁 then 𝑁 βˆ’ 𝐾 is a positive integer. (Contributed by Mario Carneiro, 29-Sep-2015.) (Revised by Mario Carneiro, 1-Jan-2017.)
(𝐾 ∈ (𝑀..^𝑁) β†’ (𝑁 βˆ’ 𝐾) ∈ β„•)
 
Theoremfzonnsub2 10172 If 𝑀 < 𝑁 then 𝑁 βˆ’ 𝑀 is a positive integer. (Contributed by Mario Carneiro, 1-Jan-2017.)
(𝐾 ∈ (𝑀..^𝑁) β†’ (𝑁 βˆ’ 𝑀) ∈ β„•)
 
Theoremfzoss1 10173 Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
(𝐾 ∈ (β„€β‰₯β€˜π‘€) β†’ (𝐾..^𝑁) βŠ† (𝑀..^𝑁))
 
Theoremfzoss2 10174 Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
(𝑁 ∈ (β„€β‰₯β€˜πΎ) β†’ (𝑀..^𝐾) βŠ† (𝑀..^𝑁))
 
Theoremfzossrbm1 10175 Subset of a half open range. (Contributed by Alexander van der Vekens, 1-Nov-2017.)
(𝑁 ∈ β„€ β†’ (0..^(𝑁 βˆ’ 1)) βŠ† (0..^𝑁))
 
Theoremfzo0ss1 10176 Subset relationship for half-open integer ranges with lower bounds 0 and 1. (Contributed by Alexander van der Vekens, 18-Mar-2018.)
(1..^𝑁) βŠ† (0..^𝑁)
 
Theoremfzossnn0 10177 A half-open integer range starting at a nonnegative integer is a subset of the nonnegative integers. (Contributed by Alexander van der Vekens, 13-May-2018.)
(𝑀 ∈ β„•0 β†’ (𝑀..^𝑁) βŠ† β„•0)
 
Theoremfzospliti 10178 One direction of splitting a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015.)
((𝐴 ∈ (𝐡..^𝐢) ∧ 𝐷 ∈ β„€) β†’ (𝐴 ∈ (𝐡..^𝐷) ∨ 𝐴 ∈ (𝐷..^𝐢)))
 
Theoremfzosplit 10179 Split a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015.)
(𝐷 ∈ (𝐡...𝐢) β†’ (𝐡..^𝐢) = ((𝐡..^𝐷) βˆͺ (𝐷..^𝐢)))
 
Theoremfzodisj 10180 Abutting half-open integer ranges are disjoint. (Contributed by Stefan O'Rear, 14-Aug-2015.)
((𝐴..^𝐡) ∩ (𝐡..^𝐢)) = βˆ…
 
Theoremfzouzsplit 10181 Split an upper integer set into a half-open integer range and another upper integer set. (Contributed by Mario Carneiro, 21-Sep-2016.)
(𝐡 ∈ (β„€β‰₯β€˜π΄) β†’ (β„€β‰₯β€˜π΄) = ((𝐴..^𝐡) βˆͺ (β„€β‰₯β€˜π΅)))
 
Theoremfzouzdisj 10182 A half-open integer range does not overlap the upper integer range starting at the endpoint of the first range. (Contributed by Mario Carneiro, 21-Sep-2016.)
((𝐴..^𝐡) ∩ (β„€β‰₯β€˜π΅)) = βˆ…
 
Theoremlbfzo0 10183 An integer is strictly greater than zero iff it is a member of β„•. (Contributed by Mario Carneiro, 29-Sep-2015.)
(0 ∈ (0..^𝐴) ↔ 𝐴 ∈ β„•)
 
Theoremelfzo0 10184 Membership in a half-open integer range based at 0. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
(𝐴 ∈ (0..^𝐡) ↔ (𝐴 ∈ β„•0 ∧ 𝐡 ∈ β„• ∧ 𝐴 < 𝐡))
 
Theoremfzo1fzo0n0 10185 An integer between 1 and an upper bound of a half-open integer range is not 0 and between 0 and the upper bound of the half-open integer range. (Contributed by Alexander van der Vekens, 21-Mar-2018.)
(𝐾 ∈ (1..^𝑁) ↔ (𝐾 ∈ (0..^𝑁) ∧ 𝐾 β‰  0))
 
Theoremelfzo0z 10186 Membership in a half-open range of nonnegative integers, generalization of elfzo0 10184 requiring the upper bound to be an integer only. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
(𝐴 ∈ (0..^𝐡) ↔ (𝐴 ∈ β„•0 ∧ 𝐡 ∈ β„€ ∧ 𝐴 < 𝐡))
 
Theoremelfzo0le 10187 A member in a half-open range of nonnegative integers is less than or equal to the upper bound of the range. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
(𝐴 ∈ (0..^𝐡) β†’ 𝐴 ≀ 𝐡)
 
Theoremelfzonn0 10188 A member of a half-open range of nonnegative integers is a nonnegative integer. (Contributed by Alexander van der Vekens, 21-May-2018.)
(𝐾 ∈ (0..^𝑁) β†’ 𝐾 ∈ β„•0)
 
Theoremfzonmapblen 10189 The result of subtracting a nonnegative integer from a positive integer and adding another nonnegative integer which is less than the first one is less then the positive integer. (Contributed by Alexander van der Vekens, 19-May-2018.)
((𝐴 ∈ (0..^𝑁) ∧ 𝐡 ∈ (0..^𝑁) ∧ 𝐡 < 𝐴) β†’ (𝐡 + (𝑁 βˆ’ 𝐴)) < 𝑁)
 
Theoremfzofzim 10190 If a nonnegative integer in a finite interval of integers is not the upper bound of the interval, it is contained in the corresponding half-open integer range. (Contributed by Alexander van der Vekens, 15-Jun-2018.)
((𝐾 β‰  𝑀 ∧ 𝐾 ∈ (0...𝑀)) β†’ 𝐾 ∈ (0..^𝑀))
 
Theoremfzossnn 10191 Half-open integer ranges starting with 1 are subsets of β„•. (Contributed by Thierry Arnoux, 28-Dec-2016.)
(1..^𝑁) βŠ† β„•
 
Theoremelfzo1 10192 Membership in a half-open integer range based at 1. (Contributed by Thierry Arnoux, 14-Feb-2017.)
(𝑁 ∈ (1..^𝑀) ↔ (𝑁 ∈ β„• ∧ 𝑀 ∈ β„• ∧ 𝑁 < 𝑀))
 
Theoremfzo0m 10193* A half-open integer range based at 0 is inhabited precisely if the upper bound is a positive integer. (Contributed by Jim Kingdon, 20-Apr-2020.)
(βˆƒπ‘₯ π‘₯ ∈ (0..^𝐴) ↔ 𝐴 ∈ β„•)
 
Theoremfzoaddel 10194 Translate membership in a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.)
((𝐴 ∈ (𝐡..^𝐢) ∧ 𝐷 ∈ β„€) β†’ (𝐴 + 𝐷) ∈ ((𝐡 + 𝐷)..^(𝐢 + 𝐷)))
 
Theoremfzoaddel2 10195 Translate membership in a shifted-down half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.)
((𝐴 ∈ (0..^(𝐡 βˆ’ 𝐢)) ∧ 𝐡 ∈ β„€ ∧ 𝐢 ∈ β„€) β†’ (𝐴 + 𝐢) ∈ (𝐢..^𝐡))
 
Theoremfzosubel 10196 Translate membership in a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.)
((𝐴 ∈ (𝐡..^𝐢) ∧ 𝐷 ∈ β„€) β†’ (𝐴 βˆ’ 𝐷) ∈ ((𝐡 βˆ’ 𝐷)..^(𝐢 βˆ’ 𝐷)))
 
Theoremfzosubel2 10197 Membership in a translated half-open integer range implies translated membership in the original range. (Contributed by Stefan O'Rear, 15-Aug-2015.)
((𝐴 ∈ ((𝐡 + 𝐢)..^(𝐡 + 𝐷)) ∧ (𝐡 ∈ β„€ ∧ 𝐢 ∈ β„€ ∧ 𝐷 ∈ β„€)) β†’ (𝐴 βˆ’ 𝐡) ∈ (𝐢..^𝐷))
 
Theoremfzosubel3 10198 Membership in a translated half-open integer range when the original range is zero-based. (Contributed by Stefan O'Rear, 15-Aug-2015.)
((𝐴 ∈ (𝐡..^(𝐡 + 𝐷)) ∧ 𝐷 ∈ β„€) β†’ (𝐴 βˆ’ 𝐡) ∈ (0..^𝐷))
 
Theoremeluzgtdifelfzo 10199 Membership of the difference of integers in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
((𝐴 ∈ β„€ ∧ 𝐡 ∈ β„€) β†’ ((𝑁 ∈ (β„€β‰₯β€˜π΄) ∧ 𝐡 < 𝐴) β†’ (𝑁 βˆ’ 𝐴) ∈ (0..^(𝑁 βˆ’ 𝐡))))
 
Theoremige2m2fzo 10200 Membership of an integer greater than 1 decreased by 2 in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 3-Oct-2018.)
(𝑁 ∈ (β„€β‰₯β€˜2) β†’ (𝑁 βˆ’ 2) ∈ (0..^(𝑁 βˆ’ 1)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-14917
  Copyright terms: Public domain < Previous  Next >