ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzoval GIF version

Theorem fzoval 9865
Description: Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
fzoval (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))

Proof of Theorem fzoval
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzoel1 9862 . . . 4 (𝑥 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ)
21a1i 9 . . 3 (𝑁 ∈ ℤ → (𝑥 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ))
3 elfzel1 9745 . . . 4 (𝑥 ∈ (𝑀...(𝑁 − 1)) → 𝑀 ∈ ℤ)
43a1i 9 . . 3 (𝑁 ∈ ℤ → (𝑥 ∈ (𝑀...(𝑁 − 1)) → 𝑀 ∈ ℤ))
5 peano2zm 9043 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
6 fzf 9734 . . . . . . . 8 ...:(ℤ × ℤ)⟶𝒫 ℤ
76fovcl 5842 . . . . . . 7 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀...(𝑁 − 1)) ∈ 𝒫 ℤ)
85, 7sylan2 282 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...(𝑁 − 1)) ∈ 𝒫 ℤ)
9 id 19 . . . . . . . 8 (𝑦 = 𝑀𝑦 = 𝑀)
10 oveq1 5747 . . . . . . . 8 (𝑧 = 𝑁 → (𝑧 − 1) = (𝑁 − 1))
119, 10oveqan12d 5759 . . . . . . 7 ((𝑦 = 𝑀𝑧 = 𝑁) → (𝑦...(𝑧 − 1)) = (𝑀...(𝑁 − 1)))
12 df-fzo 9860 . . . . . . 7 ..^ = (𝑦 ∈ ℤ, 𝑧 ∈ ℤ ↦ (𝑦...(𝑧 − 1)))
1311, 12ovmpoga 5866 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀...(𝑁 − 1)) ∈ 𝒫 ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
148, 13mpd3an3 1299 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
1514eleq2d 2185 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ (𝑀..^𝑁) ↔ 𝑥 ∈ (𝑀...(𝑁 − 1))))
1615expcom 115 . . 3 (𝑁 ∈ ℤ → (𝑀 ∈ ℤ → (𝑥 ∈ (𝑀..^𝑁) ↔ 𝑥 ∈ (𝑀...(𝑁 − 1)))))
172, 4, 16pm5.21ndd 677 . 2 (𝑁 ∈ ℤ → (𝑥 ∈ (𝑀..^𝑁) ↔ 𝑥 ∈ (𝑀...(𝑁 − 1))))
1817eqrdv 2113 1 (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1314  wcel 1463  𝒫 cpw 3478  (class class class)co 5740  1c1 7585  cmin 7897  cz 9005  ...cfz 9730  ..^cfzo 9859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-addcom 7684  ax-addass 7686  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-0id 7692  ax-rnegex 7693  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-ltadd 7700
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-inn 8678  df-n0 8929  df-z 9006  df-uz 9276  df-fz 9731  df-fzo 9860
This theorem is referenced by:  elfzo  9866  fzodcel  9869  fzon  9883  fzoss1  9888  fzoss2  9889  fzval3  9921  fzo0to2pr  9935  fzo0to3tp  9936  fzo0to42pr  9937  fzoend  9939  fzofzp1b  9945  elfzom1b  9946  peano2fzor  9949  fzoshftral  9955  zmodfzo  10060  zmodidfzo  10066  fzofig  10145  hashfzo  10508  fzosump1  11126  telfsumo  11175  fsumparts  11179  geoserap  11216  geo2sum2  11224  dfphi2  11791
  Copyright terms: Public domain W3C validator