| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzoval | GIF version | ||
| Description: Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| fzoval | ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoel1 10269 | . . . 4 ⊢ (𝑥 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑥 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ)) |
| 3 | elfzel1 10148 | . . . 4 ⊢ (𝑥 ∈ (𝑀...(𝑁 − 1)) → 𝑀 ∈ ℤ) | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑥 ∈ (𝑀...(𝑁 − 1)) → 𝑀 ∈ ℤ)) |
| 5 | peano2zm 9412 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
| 6 | fzf 10136 | . . . . . . . 8 ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ | |
| 7 | 6 | fovcl 6053 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀...(𝑁 − 1)) ∈ 𝒫 ℤ) |
| 8 | 5, 7 | sylan2 286 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...(𝑁 − 1)) ∈ 𝒫 ℤ) |
| 9 | id 19 | . . . . . . . 8 ⊢ (𝑦 = 𝑀 → 𝑦 = 𝑀) | |
| 10 | oveq1 5953 | . . . . . . . 8 ⊢ (𝑧 = 𝑁 → (𝑧 − 1) = (𝑁 − 1)) | |
| 11 | 9, 10 | oveqan12d 5965 | . . . . . . 7 ⊢ ((𝑦 = 𝑀 ∧ 𝑧 = 𝑁) → (𝑦...(𝑧 − 1)) = (𝑀...(𝑁 − 1))) |
| 12 | df-fzo 10267 | . . . . . . 7 ⊢ ..^ = (𝑦 ∈ ℤ, 𝑧 ∈ ℤ ↦ (𝑦...(𝑧 − 1))) | |
| 13 | 11, 12 | ovmpoga 6077 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀...(𝑁 − 1)) ∈ 𝒫 ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 14 | 8, 13 | mpd3an3 1351 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 15 | 14 | eleq2d 2275 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ (𝑀..^𝑁) ↔ 𝑥 ∈ (𝑀...(𝑁 − 1)))) |
| 16 | 15 | expcom 116 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑀 ∈ ℤ → (𝑥 ∈ (𝑀..^𝑁) ↔ 𝑥 ∈ (𝑀...(𝑁 − 1))))) |
| 17 | 2, 4, 16 | pm5.21ndd 707 | . 2 ⊢ (𝑁 ∈ ℤ → (𝑥 ∈ (𝑀..^𝑁) ↔ 𝑥 ∈ (𝑀...(𝑁 − 1)))) |
| 18 | 17 | eqrdv 2203 | 1 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2176 𝒫 cpw 3616 (class class class)co 5946 1c1 7928 − cmin 8245 ℤcz 9374 ...cfz 10132 ..^cfzo 10266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-inn 9039 df-n0 9298 df-z 9375 df-uz 9651 df-fz 10133 df-fzo 10267 |
| This theorem is referenced by: elfzo 10273 fzodcel 10277 fzon 10291 fzoss1 10297 fzoss2 10298 fzval3 10335 fzo0to2pr 10349 fzo0to3tp 10350 fzo0to42pr 10351 fzoend 10353 fzofzp1b 10359 elfzom1b 10360 peano2fzor 10363 fzoshftral 10369 zmodfzo 10494 zmodidfzo 10500 fzofig 10579 hashfzo 10969 wrdffz 11017 fzosump1 11761 telfsumo 11810 fsumparts 11814 geoserap 11851 geo2sum2 11859 dfphi2 12575 reumodprminv 12609 gsumwsubmcl 13361 gsumwmhm 13363 |
| Copyright terms: Public domain | W3C validator |