ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzoval GIF version

Theorem fzoval 9956
Description: Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
fzoval (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))

Proof of Theorem fzoval
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzoel1 9953 . . . 4 (𝑥 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ)
21a1i 9 . . 3 (𝑁 ∈ ℤ → (𝑥 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ))
3 elfzel1 9836 . . . 4 (𝑥 ∈ (𝑀...(𝑁 − 1)) → 𝑀 ∈ ℤ)
43a1i 9 . . 3 (𝑁 ∈ ℤ → (𝑥 ∈ (𝑀...(𝑁 − 1)) → 𝑀 ∈ ℤ))
5 peano2zm 9116 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
6 fzf 9825 . . . . . . . 8 ...:(ℤ × ℤ)⟶𝒫 ℤ
76fovcl 5884 . . . . . . 7 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀...(𝑁 − 1)) ∈ 𝒫 ℤ)
85, 7sylan2 284 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...(𝑁 − 1)) ∈ 𝒫 ℤ)
9 id 19 . . . . . . . 8 (𝑦 = 𝑀𝑦 = 𝑀)
10 oveq1 5789 . . . . . . . 8 (𝑧 = 𝑁 → (𝑧 − 1) = (𝑁 − 1))
119, 10oveqan12d 5801 . . . . . . 7 ((𝑦 = 𝑀𝑧 = 𝑁) → (𝑦...(𝑧 − 1)) = (𝑀...(𝑁 − 1)))
12 df-fzo 9951 . . . . . . 7 ..^ = (𝑦 ∈ ℤ, 𝑧 ∈ ℤ ↦ (𝑦...(𝑧 − 1)))
1311, 12ovmpoga 5908 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀...(𝑁 − 1)) ∈ 𝒫 ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
148, 13mpd3an3 1317 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
1514eleq2d 2210 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ (𝑀..^𝑁) ↔ 𝑥 ∈ (𝑀...(𝑁 − 1))))
1615expcom 115 . . 3 (𝑁 ∈ ℤ → (𝑀 ∈ ℤ → (𝑥 ∈ (𝑀..^𝑁) ↔ 𝑥 ∈ (𝑀...(𝑁 − 1)))))
172, 4, 16pm5.21ndd 695 . 2 (𝑁 ∈ ℤ → (𝑥 ∈ (𝑀..^𝑁) ↔ 𝑥 ∈ (𝑀...(𝑁 − 1))))
1817eqrdv 2138 1 (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481  𝒫 cpw 3515  (class class class)co 5782  1c1 7645  cmin 7957  cz 9078  ...cfz 9821  ..^cfzo 9950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822  df-fzo 9951
This theorem is referenced by:  elfzo  9957  fzodcel  9960  fzon  9974  fzoss1  9979  fzoss2  9980  fzval3  10012  fzo0to2pr  10026  fzo0to3tp  10027  fzo0to42pr  10028  fzoend  10030  fzofzp1b  10036  elfzom1b  10037  peano2fzor  10040  fzoshftral  10046  zmodfzo  10151  zmodidfzo  10157  fzofig  10236  hashfzo  10600  fzosump1  11218  telfsumo  11267  fsumparts  11271  geoserap  11308  geo2sum2  11316  dfphi2  11932
  Copyright terms: Public domain W3C validator