![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzoval | GIF version |
Description: Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
fzoval | ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzoel1 10177 | . . . 4 ⊢ (𝑥 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ) | |
2 | 1 | a1i 9 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑥 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ)) |
3 | elfzel1 10056 | . . . 4 ⊢ (𝑥 ∈ (𝑀...(𝑁 − 1)) → 𝑀 ∈ ℤ) | |
4 | 3 | a1i 9 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑥 ∈ (𝑀...(𝑁 − 1)) → 𝑀 ∈ ℤ)) |
5 | peano2zm 9322 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
6 | fzf 10044 | . . . . . . . 8 ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ | |
7 | 6 | fovcl 6003 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀...(𝑁 − 1)) ∈ 𝒫 ℤ) |
8 | 5, 7 | sylan2 286 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...(𝑁 − 1)) ∈ 𝒫 ℤ) |
9 | id 19 | . . . . . . . 8 ⊢ (𝑦 = 𝑀 → 𝑦 = 𝑀) | |
10 | oveq1 5904 | . . . . . . . 8 ⊢ (𝑧 = 𝑁 → (𝑧 − 1) = (𝑁 − 1)) | |
11 | 9, 10 | oveqan12d 5916 | . . . . . . 7 ⊢ ((𝑦 = 𝑀 ∧ 𝑧 = 𝑁) → (𝑦...(𝑧 − 1)) = (𝑀...(𝑁 − 1))) |
12 | df-fzo 10175 | . . . . . . 7 ⊢ ..^ = (𝑦 ∈ ℤ, 𝑧 ∈ ℤ ↦ (𝑦...(𝑧 − 1))) | |
13 | 11, 12 | ovmpoga 6027 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀...(𝑁 − 1)) ∈ 𝒫 ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
14 | 8, 13 | mpd3an3 1349 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
15 | 14 | eleq2d 2259 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ (𝑀..^𝑁) ↔ 𝑥 ∈ (𝑀...(𝑁 − 1)))) |
16 | 15 | expcom 116 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑀 ∈ ℤ → (𝑥 ∈ (𝑀..^𝑁) ↔ 𝑥 ∈ (𝑀...(𝑁 − 1))))) |
17 | 2, 4, 16 | pm5.21ndd 706 | . 2 ⊢ (𝑁 ∈ ℤ → (𝑥 ∈ (𝑀..^𝑁) ↔ 𝑥 ∈ (𝑀...(𝑁 − 1)))) |
18 | 17 | eqrdv 2187 | 1 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 𝒫 cpw 3590 (class class class)co 5897 1c1 7843 − cmin 8159 ℤcz 9284 ...cfz 10040 ..^cfzo 10174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-addcom 7942 ax-addass 7944 ax-distr 7946 ax-i2m1 7947 ax-0lt1 7948 ax-0id 7950 ax-rnegex 7951 ax-cnre 7953 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 ax-pre-ltadd 7958 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-1st 6166 df-2nd 6167 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 df-sub 8161 df-neg 8162 df-inn 8951 df-n0 9208 df-z 9285 df-uz 9560 df-fz 10041 df-fzo 10175 |
This theorem is referenced by: elfzo 10181 fzodcel 10184 fzon 10198 fzoss1 10203 fzoss2 10204 fzval3 10236 fzo0to2pr 10250 fzo0to3tp 10251 fzo0to42pr 10252 fzoend 10254 fzofzp1b 10260 elfzom1b 10261 peano2fzor 10264 fzoshftral 10270 zmodfzo 10380 zmodidfzo 10386 fzofig 10465 hashfzo 10837 fzosump1 11460 telfsumo 11509 fsumparts 11513 geoserap 11550 geo2sum2 11558 dfphi2 12255 reumodprminv 12288 |
Copyright terms: Public domain | W3C validator |