| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzoval | GIF version | ||
| Description: Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| fzoval | ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoel1 10302 | . . . 4 ⊢ (𝑥 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑥 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ)) |
| 3 | elfzel1 10181 | . . . 4 ⊢ (𝑥 ∈ (𝑀...(𝑁 − 1)) → 𝑀 ∈ ℤ) | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑥 ∈ (𝑀...(𝑁 − 1)) → 𝑀 ∈ ℤ)) |
| 5 | peano2zm 9445 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
| 6 | fzf 10169 | . . . . . . . 8 ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ | |
| 7 | 6 | fovcl 6074 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀...(𝑁 − 1)) ∈ 𝒫 ℤ) |
| 8 | 5, 7 | sylan2 286 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...(𝑁 − 1)) ∈ 𝒫 ℤ) |
| 9 | id 19 | . . . . . . . 8 ⊢ (𝑦 = 𝑀 → 𝑦 = 𝑀) | |
| 10 | oveq1 5974 | . . . . . . . 8 ⊢ (𝑧 = 𝑁 → (𝑧 − 1) = (𝑁 − 1)) | |
| 11 | 9, 10 | oveqan12d 5986 | . . . . . . 7 ⊢ ((𝑦 = 𝑀 ∧ 𝑧 = 𝑁) → (𝑦...(𝑧 − 1)) = (𝑀...(𝑁 − 1))) |
| 12 | df-fzo 10300 | . . . . . . 7 ⊢ ..^ = (𝑦 ∈ ℤ, 𝑧 ∈ ℤ ↦ (𝑦...(𝑧 − 1))) | |
| 13 | 11, 12 | ovmpoga 6098 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀...(𝑁 − 1)) ∈ 𝒫 ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 14 | 8, 13 | mpd3an3 1351 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 15 | 14 | eleq2d 2277 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ (𝑀..^𝑁) ↔ 𝑥 ∈ (𝑀...(𝑁 − 1)))) |
| 16 | 15 | expcom 116 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑀 ∈ ℤ → (𝑥 ∈ (𝑀..^𝑁) ↔ 𝑥 ∈ (𝑀...(𝑁 − 1))))) |
| 17 | 2, 4, 16 | pm5.21ndd 707 | . 2 ⊢ (𝑁 ∈ ℤ → (𝑥 ∈ (𝑀..^𝑁) ↔ 𝑥 ∈ (𝑀...(𝑁 − 1)))) |
| 18 | 17 | eqrdv 2205 | 1 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 𝒫 cpw 3626 (class class class)co 5967 1c1 7961 − cmin 8278 ℤcz 9407 ...cfz 10165 ..^cfzo 10299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 df-fzo 10300 |
| This theorem is referenced by: elfzo 10306 fzodcel 10310 fzon 10324 fzoss1 10330 fzoss2 10331 fzval3 10370 fzo0to2pr 10384 fzo0to3tp 10385 fzo0to42pr 10386 fzoend 10388 fzofzp1b 10394 elfzom1b 10395 peano2fzor 10398 fzoshftral 10404 zmodfzo 10529 zmodidfzo 10535 fzofig 10614 hashfzo 11004 wrdffz 11052 fzosump1 11843 telfsumo 11892 fsumparts 11896 geoserap 11933 geo2sum2 11941 dfphi2 12657 reumodprminv 12691 gsumwsubmcl 13443 gsumwmhm 13445 |
| Copyright terms: Public domain | W3C validator |