Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzoval | GIF version |
Description: Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
fzoval | ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzoel1 10080 | . . . 4 ⊢ (𝑥 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ) | |
2 | 1 | a1i 9 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑥 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ)) |
3 | elfzel1 9959 | . . . 4 ⊢ (𝑥 ∈ (𝑀...(𝑁 − 1)) → 𝑀 ∈ ℤ) | |
4 | 3 | a1i 9 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑥 ∈ (𝑀...(𝑁 − 1)) → 𝑀 ∈ ℤ)) |
5 | peano2zm 9229 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
6 | fzf 9948 | . . . . . . . 8 ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ | |
7 | 6 | fovcl 5947 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀...(𝑁 − 1)) ∈ 𝒫 ℤ) |
8 | 5, 7 | sylan2 284 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...(𝑁 − 1)) ∈ 𝒫 ℤ) |
9 | id 19 | . . . . . . . 8 ⊢ (𝑦 = 𝑀 → 𝑦 = 𝑀) | |
10 | oveq1 5849 | . . . . . . . 8 ⊢ (𝑧 = 𝑁 → (𝑧 − 1) = (𝑁 − 1)) | |
11 | 9, 10 | oveqan12d 5861 | . . . . . . 7 ⊢ ((𝑦 = 𝑀 ∧ 𝑧 = 𝑁) → (𝑦...(𝑧 − 1)) = (𝑀...(𝑁 − 1))) |
12 | df-fzo 10078 | . . . . . . 7 ⊢ ..^ = (𝑦 ∈ ℤ, 𝑧 ∈ ℤ ↦ (𝑦...(𝑧 − 1))) | |
13 | 11, 12 | ovmpoga 5971 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀...(𝑁 − 1)) ∈ 𝒫 ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
14 | 8, 13 | mpd3an3 1328 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
15 | 14 | eleq2d 2236 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ (𝑀..^𝑁) ↔ 𝑥 ∈ (𝑀...(𝑁 − 1)))) |
16 | 15 | expcom 115 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑀 ∈ ℤ → (𝑥 ∈ (𝑀..^𝑁) ↔ 𝑥 ∈ (𝑀...(𝑁 − 1))))) |
17 | 2, 4, 16 | pm5.21ndd 695 | . 2 ⊢ (𝑁 ∈ ℤ → (𝑥 ∈ (𝑀..^𝑁) ↔ 𝑥 ∈ (𝑀...(𝑁 − 1)))) |
18 | 17 | eqrdv 2163 | 1 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 𝒫 cpw 3559 (class class class)co 5842 1c1 7754 − cmin 8069 ℤcz 9191 ...cfz 9944 ..^cfzo 10077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 df-fzo 10078 |
This theorem is referenced by: elfzo 10084 fzodcel 10087 fzon 10101 fzoss1 10106 fzoss2 10107 fzval3 10139 fzo0to2pr 10153 fzo0to3tp 10154 fzo0to42pr 10155 fzoend 10157 fzofzp1b 10163 elfzom1b 10164 peano2fzor 10167 fzoshftral 10173 zmodfzo 10282 zmodidfzo 10288 fzofig 10367 hashfzo 10735 fzosump1 11358 telfsumo 11407 fsumparts 11411 geoserap 11448 geo2sum2 11456 dfphi2 12152 reumodprminv 12185 |
Copyright terms: Public domain | W3C validator |