| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnfldbas | GIF version | ||
| Description: The base set of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
| Ref | Expression |
|---|---|
| cnfldbas | ⊢ ℂ = (Base‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8084 | . 2 ⊢ ℂ ∈ V | |
| 2 | cnfldstr 14435 | . . 3 ⊢ ℂfld Struct 〈1, ;13〉 | |
| 3 | baseslid 13004 | . . 3 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
| 4 | snsstp1 3794 | . . . 4 ⊢ {〈(Base‘ndx), ℂ〉} ⊆ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} | |
| 5 | ssun1 3344 | . . . . . 6 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ⊆ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) | |
| 6 | ssun1 3344 | . . . . . 6 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ⊆ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 7 | 5, 6 | sstri 3210 | . . . . 5 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ⊆ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) |
| 8 | df-cnfld 14434 | . . . . 5 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 9 | 7, 8 | sseqtrri 3236 | . . . 4 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ⊆ ℂfld |
| 10 | 4, 9 | sstri 3210 | . . 3 ⊢ {〈(Base‘ndx), ℂ〉} ⊆ ℂfld |
| 11 | 2, 3, 10 | strslfv 12992 | . 2 ⊢ (ℂ ∈ V → ℂ = (Base‘ℂfld)) |
| 12 | 1, 11 | ax-mp 5 | 1 ⊢ ℂ = (Base‘ℂfld) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2178 Vcvv 2776 ∪ cun 3172 {csn 3643 {ctp 3645 〈cop 3646 ∘ ccom 4697 ‘cfv 5290 (class class class)co 5967 ∈ cmpo 5969 ℂcc 7958 1c1 7961 + caddc 7963 · cmul 7965 ≤ cle 8143 − cmin 8278 3c3 9123 ;cdc 9539 ∗ccj 11265 abscabs 11423 ndxcnx 12944 Basecbs 12947 +gcplusg 13024 .rcmulr 13025 *𝑟cstv 13026 TopSetcts 13030 lecple 13031 distcds 13033 UnifSetcunif 13034 MetOpencmopn 14418 metUnifcmetu 14419 ℂfldccnfld 14433 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-tp 3651 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 df-8 9136 df-9 9137 df-n0 9331 df-z 9408 df-dec 9540 df-uz 9684 df-rp 9811 df-fz 10166 df-cj 11268 df-abs 11425 df-struct 12949 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-mulr 13038 df-starv 13039 df-tset 13043 df-ple 13044 df-ds 13046 df-unif 13047 df-topgen 13207 df-bl 14423 df-mopn 14424 df-fg 14426 df-metu 14427 df-cnfld 14434 |
| This theorem is referenced by: cncrng 14446 cnfld0 14448 cnfld1 14449 cnfldneg 14450 cnfldplusf 14451 cnfldsub 14452 cnfldmulg 14453 cnfldexp 14454 cnsubmlem 14455 cnsubglem 14456 cnsubrglem 14457 gsumfzfsumlemm 14464 cnfldui 14466 zringbas 14473 zring0 14477 expghmap 14484 cnfldms 15123 cnfldtopn 15126 cnfldtopon 15127 dvply2g 15353 dvply2 15354 |
| Copyright terms: Public domain | W3C validator |