| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnfldcj | GIF version | ||
| Description: The conjugation operation of the field of complex numbers. (Contributed by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
| Ref | Expression |
|---|---|
| cnfldcj | ⊢ ∗ = (*𝑟‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjf 11191 | . . 3 ⊢ ∗:ℂ⟶ℂ | |
| 2 | cnex 8051 | . . 3 ⊢ ℂ ∈ V | |
| 3 | fex 5815 | . . 3 ⊢ ((∗:ℂ⟶ℂ ∧ ℂ ∈ V) → ∗ ∈ V) | |
| 4 | 1, 2, 3 | mp2an 426 | . 2 ⊢ ∗ ∈ V |
| 5 | cnfldstr 14353 | . . 3 ⊢ ℂfld Struct 〈1, ;13〉 | |
| 6 | starvslid 13006 | . . 3 ⊢ (*𝑟 = Slot (*𝑟‘ndx) ∧ (*𝑟‘ndx) ∈ ℕ) | |
| 7 | ssun2 3337 | . . . 4 ⊢ {〈(*𝑟‘ndx), ∗〉} ⊆ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) | |
| 8 | ssun1 3336 | . . . . 5 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ⊆ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 9 | df-cnfld 14352 | . . . . 5 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 10 | 8, 9 | sseqtrri 3228 | . . . 4 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ⊆ ℂfld |
| 11 | 7, 10 | sstri 3202 | . . 3 ⊢ {〈(*𝑟‘ndx), ∗〉} ⊆ ℂfld |
| 12 | 5, 6, 11 | strslfv 12910 | . 2 ⊢ (∗ ∈ V → ∗ = (*𝑟‘ℂfld)) |
| 13 | 4, 12 | ax-mp 5 | 1 ⊢ ∗ = (*𝑟‘ℂfld) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2176 Vcvv 2772 ∪ cun 3164 {csn 3633 {ctp 3635 〈cop 3636 ∘ ccom 4680 ⟶wf 5268 ‘cfv 5272 (class class class)co 5946 ∈ cmpo 5948 ℂcc 7925 1c1 7928 + caddc 7930 · cmul 7932 ≤ cle 8110 − cmin 8245 3c3 9090 ;cdc 9506 ∗ccj 11183 abscabs 11341 ndxcnx 12862 Basecbs 12865 +gcplusg 12942 .rcmulr 12943 *𝑟cstv 12944 TopSetcts 12948 lecple 12949 distcds 12951 UnifSetcunif 12952 MetOpencmopn 14336 metUnifcmetu 14337 ℂfldccnfld 14351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-tp 3641 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-5 9100 df-6 9101 df-7 9102 df-8 9103 df-9 9104 df-n0 9298 df-z 9375 df-dec 9507 df-uz 9651 df-rp 9778 df-fz 10133 df-cj 11186 df-abs 11343 df-struct 12867 df-ndx 12868 df-slot 12869 df-base 12871 df-plusg 12955 df-mulr 12956 df-starv 12957 df-tset 12961 df-ple 12962 df-ds 12964 df-unif 12965 df-topgen 13125 df-bl 14341 df-mopn 14342 df-fg 14344 df-metu 14345 df-cnfld 14352 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |