![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnfldcj | GIF version |
Description: The conjugation operation of the field of complex numbers. (Contributed by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
Ref | Expression |
---|---|
cnfldcj | β’ β = (*πββfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cjf 10858 | . . 3 β’ β:ββΆβ | |
2 | cnex 7937 | . . 3 β’ β β V | |
3 | fex 5747 | . . 3 β’ ((β:ββΆβ β§ β β V) β β β V) | |
4 | 1, 2, 3 | mp2an 426 | . 2 β’ β β V |
5 | cnfldstr 13496 | . . 3 β’ βfld Struct β¨1, ;13β© | |
6 | starvslid 12601 | . . 3 β’ (*π = Slot (*πβndx) β§ (*πβndx) β β) | |
7 | ssun2 3301 | . . . 4 β’ {β¨(*πβndx), ββ©} β ({β¨(Baseβndx), ββ©, β¨(+gβndx), + β©, β¨(.rβndx), Β· β©} βͺ {β¨(*πβndx), ββ©}) | |
8 | df-icnfld 13495 | . . . 4 β’ βfld = ({β¨(Baseβndx), ββ©, β¨(+gβndx), + β©, β¨(.rβndx), Β· β©} βͺ {β¨(*πβndx), ββ©}) | |
9 | 7, 8 | sseqtrri 3192 | . . 3 β’ {β¨(*πβndx), ββ©} β βfld |
10 | 5, 6, 9 | strslfv 12509 | . 2 β’ (β β V β β = (*πββfld)) |
11 | 4, 10 | ax-mp 5 | 1 β’ β = (*πββfld) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 β wcel 2148 Vcvv 2739 βͺ cun 3129 {csn 3594 {ctp 3596 β¨cop 3597 βΆwf 5214 βcfv 5218 βcc 7811 1c1 7814 + caddc 7816 Β· cmul 7818 3c3 8973 ;cdc 9386 βccj 10850 ndxcnx 12461 Basecbs 12464 +gcplusg 12538 .rcmulr 12539 *πcstv 12540 βfldccnfld 13494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-addf 7935 ax-mulf 7936 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-tp 3602 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-5 8983 df-6 8984 df-7 8985 df-8 8986 df-9 8987 df-n0 9179 df-z 9256 df-dec 9387 df-uz 9531 df-fz 10011 df-cj 10853 df-struct 12466 df-ndx 12467 df-slot 12468 df-base 12470 df-plusg 12551 df-mulr 12552 df-starv 12553 df-icnfld 13495 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |