![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnfldcj | GIF version |
Description: The conjugation operation of the field of complex numbers. (Contributed by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
Ref | Expression |
---|---|
cnfldcj | ⊢ ∗ = (*𝑟‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cjf 10965 | . . 3 ⊢ ∗:ℂ⟶ℂ | |
2 | cnex 7982 | . . 3 ⊢ ℂ ∈ V | |
3 | fex 5775 | . . 3 ⊢ ((∗:ℂ⟶ℂ ∧ ℂ ∈ V) → ∗ ∈ V) | |
4 | 1, 2, 3 | mp2an 426 | . 2 ⊢ ∗ ∈ V |
5 | cnfldstr 14013 | . . 3 ⊢ ℂfld Struct 〈1, ;13〉 | |
6 | starvslid 12732 | . . 3 ⊢ (*𝑟 = Slot (*𝑟‘ndx) ∧ (*𝑟‘ndx) ∈ ℕ) | |
7 | ssun2 3319 | . . . 4 ⊢ {〈(*𝑟‘ndx), ∗〉} ⊆ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) | |
8 | df-icnfld 14012 | . . . 4 ⊢ ℂfld = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) | |
9 | 7, 8 | sseqtrri 3210 | . . 3 ⊢ {〈(*𝑟‘ndx), ∗〉} ⊆ ℂfld |
10 | 5, 6, 9 | strslfv 12637 | . 2 ⊢ (∗ ∈ V → ∗ = (*𝑟‘ℂfld)) |
11 | 4, 10 | ax-mp 5 | 1 ⊢ ∗ = (*𝑟‘ℂfld) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2160 Vcvv 2756 ∪ cun 3147 {csn 3614 {ctp 3616 〈cop 3617 ⟶wf 5238 ‘cfv 5242 ℂcc 7856 1c1 7859 + caddc 7861 · cmul 7863 3c3 9020 ;cdc 9434 ∗ccj 10957 ndxcnx 12589 Basecbs 12592 +gcplusg 12669 .rcmulr 12670 *𝑟cstv 12671 ℂfldccnfld 14011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4140 ax-sep 4143 ax-pow 4199 ax-pr 4234 ax-un 4458 ax-setind 4561 ax-cnex 7949 ax-resscn 7950 ax-1cn 7951 ax-1re 7952 ax-icn 7953 ax-addcl 7954 ax-addrcl 7955 ax-mulcl 7956 ax-mulrcl 7957 ax-addcom 7958 ax-mulcom 7959 ax-addass 7960 ax-mulass 7961 ax-distr 7962 ax-i2m1 7963 ax-0lt1 7964 ax-1rid 7965 ax-0id 7966 ax-rnegex 7967 ax-precex 7968 ax-cnre 7969 ax-pre-ltirr 7970 ax-pre-ltwlin 7971 ax-pre-lttrn 7972 ax-pre-apti 7973 ax-pre-ltadd 7974 ax-pre-mulgt0 7975 ax-addf 7980 ax-mulf 7981 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2758 df-sbc 2982 df-csb 3077 df-dif 3151 df-un 3153 df-in 3155 df-ss 3162 df-nul 3443 df-pw 3599 df-sn 3620 df-pr 3621 df-tp 3622 df-op 3623 df-uni 3832 df-int 3867 df-iun 3910 df-br 4026 df-opab 4087 df-mpt 4088 df-id 4318 df-xp 4657 df-rel 4658 df-cnv 4659 df-co 4660 df-dm 4661 df-rn 4662 df-res 4663 df-ima 4664 df-iota 5203 df-fun 5244 df-fn 5245 df-f 5246 df-f1 5247 df-fo 5248 df-f1o 5249 df-fv 5250 df-riota 5861 df-ov 5909 df-oprab 5910 df-mpo 5911 df-pnf 8042 df-mnf 8043 df-xr 8044 df-ltxr 8045 df-le 8046 df-sub 8178 df-neg 8179 df-reap 8580 df-inn 8969 df-2 9027 df-3 9028 df-4 9029 df-5 9030 df-6 9031 df-7 9032 df-8 9033 df-9 9034 df-n0 9227 df-z 9304 df-dec 9435 df-uz 9579 df-fz 10061 df-cj 10960 df-struct 12594 df-ndx 12595 df-slot 12596 df-base 12598 df-plusg 12682 df-mulr 12683 df-starv 12684 df-icnfld 14012 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |