![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnfldadd | GIF version |
Description: The addition operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
Ref | Expression |
---|---|
cnfldadd | ⊢ + = (+g‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addex 9665 | . 2 ⊢ + ∈ V | |
2 | cnfldstr 13739 | . . 3 ⊢ ℂfld Struct 〈1, ;13〉 | |
3 | plusgslid 12586 | . . 3 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
4 | snsstp2 3755 | . . . 4 ⊢ {〈(+g‘ndx), + 〉} ⊆ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} | |
5 | ssun1 3310 | . . . . 5 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⊆ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) | |
6 | df-icnfld 13738 | . . . . 5 ⊢ ℂfld = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) | |
7 | 5, 6 | sseqtrri 3202 | . . . 4 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⊆ ℂfld |
8 | 4, 7 | sstri 3176 | . . 3 ⊢ {〈(+g‘ndx), + 〉} ⊆ ℂfld |
9 | 2, 3, 8 | strslfv 12521 | . 2 ⊢ ( + ∈ V → + = (+g‘ℂfld)) |
10 | 1, 9 | ax-mp 5 | 1 ⊢ + = (+g‘ℂfld) |
Colors of variables: wff set class |
Syntax hints: = wceq 1363 ∈ wcel 2158 Vcvv 2749 ∪ cun 3139 {csn 3604 {ctp 3606 〈cop 3607 ‘cfv 5228 ℂcc 7823 1c1 7826 + caddc 7828 · cmul 7830 3c3 8985 ;cdc 9398 ∗ccj 10862 ndxcnx 12473 Basecbs 12476 +gcplusg 12551 .rcmulr 12552 *𝑟cstv 12553 ℂfldccnfld 13737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-mulrcl 7924 ax-addcom 7925 ax-mulcom 7926 ax-addass 7927 ax-mulass 7928 ax-distr 7929 ax-i2m1 7930 ax-0lt1 7931 ax-1rid 7932 ax-0id 7933 ax-rnegex 7934 ax-precex 7935 ax-cnre 7936 ax-pre-ltirr 7937 ax-pre-ltwlin 7938 ax-pre-lttrn 7939 ax-pre-apti 7940 ax-pre-ltadd 7941 ax-pre-mulgt0 7942 ax-addf 7947 ax-mulf 7948 |
This theorem depends on definitions: df-bi 117 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-tp 3612 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 df-sub 8144 df-neg 8145 df-reap 8546 df-inn 8934 df-2 8992 df-3 8993 df-4 8994 df-5 8995 df-6 8996 df-7 8997 df-8 8998 df-9 8999 df-n0 9191 df-z 9268 df-dec 9399 df-uz 9543 df-fz 10023 df-cj 10865 df-struct 12478 df-ndx 12479 df-slot 12480 df-base 12482 df-plusg 12564 df-mulr 12565 df-starv 12566 df-icnfld 13738 |
This theorem is referenced by: cncrng 13745 cnfld0 13747 cnfldneg 13749 cnfldplusf 13750 cnfldsub 13751 cnfldmulg 13752 cnsubmlem 13754 cnsubglem 13755 zringplusg 13769 |
Copyright terms: Public domain | W3C validator |