![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnfldstr | GIF version |
Description: The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
Ref | Expression |
---|---|
cnfldstr | ⊢ ℂfld Struct ⟨1, ;13⟩ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-icnfld 13541 | . . . 4 ⊢ ℂfld = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) | |
2 | cnex 7937 | . . . . 5 ⊢ ℂ ∈ V | |
3 | 2 | a1i 9 | . . . 4 ⊢ (⊤ → ℂ ∈ V) |
4 | addex 9653 | . . . . 5 ⊢ + ∈ V | |
5 | 4 | a1i 9 | . . . 4 ⊢ (⊤ → + ∈ V) |
6 | mulex 9654 | . . . . 5 ⊢ · ∈ V | |
7 | 6 | a1i 9 | . . . 4 ⊢ (⊤ → · ∈ V) |
8 | cjf 10858 | . . . . . 6 ⊢ ∗:ℂ⟶ℂ | |
9 | fex 5747 | . . . . . 6 ⊢ ((∗:ℂ⟶ℂ ∧ ℂ ∈ V) → ∗ ∈ V) | |
10 | 8, 2, 9 | mp2an 426 | . . . . 5 ⊢ ∗ ∈ V |
11 | 10 | a1i 9 | . . . 4 ⊢ (⊤ → ∗ ∈ V) |
12 | 1, 3, 5, 7, 11 | srngstrd 12606 | . . 3 ⊢ (⊤ → ℂfld Struct ⟨1, 4⟩) |
13 | 4z 9285 | . . . . 5 ⊢ 4 ∈ ℤ | |
14 | 1nn0 9194 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
15 | 3nn 9083 | . . . . . . 7 ⊢ 3 ∈ ℕ | |
16 | 14, 15 | decnncl 9405 | . . . . . 6 ⊢ ;13 ∈ ℕ |
17 | 16 | nnzi 9276 | . . . . 5 ⊢ ;13 ∈ ℤ |
18 | 1nn 8932 | . . . . . 6 ⊢ 1 ∈ ℕ | |
19 | 3nn0 9196 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
20 | 4nn0 9197 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
21 | 4re 8998 | . . . . . . 7 ⊢ 4 ∈ ℝ | |
22 | 9re 9008 | . . . . . . 7 ⊢ 9 ∈ ℝ | |
23 | 4lt9 9122 | . . . . . . 7 ⊢ 4 < 9 | |
24 | 21, 22, 23 | ltleii 8062 | . . . . . 6 ⊢ 4 ≤ 9 |
25 | 18, 19, 20, 24 | declei 9421 | . . . . 5 ⊢ 4 ≤ ;13 |
26 | eluz2 9536 | . . . . 5 ⊢ (;13 ∈ (ℤ≥‘4) ↔ (4 ∈ ℤ ∧ ;13 ∈ ℤ ∧ 4 ≤ ;13)) | |
27 | 13, 17, 25, 26 | mpbir3an 1179 | . . . 4 ⊢ ;13 ∈ (ℤ≥‘4) |
28 | 27 | a1i 9 | . . 3 ⊢ (⊤ → ;13 ∈ (ℤ≥‘4)) |
29 | 12, 28 | strext 12566 | . 2 ⊢ (⊤ → ℂfld Struct ⟨1, ;13⟩) |
30 | 29 | mptru 1362 | 1 ⊢ ℂfld Struct ⟨1, ;13⟩ |
Colors of variables: wff set class |
Syntax hints: ⊤wtru 1354 ∈ wcel 2148 Vcvv 2739 ⟨cop 3597 class class class wbr 4005 ⟶wf 5214 ‘cfv 5218 ℂcc 7811 1c1 7814 + caddc 7816 · cmul 7818 ≤ cle 7995 3c3 8973 4c4 8974 9c9 8979 ℤcz 9255 ;cdc 9386 ℤ≥cuz 9530 ∗ccj 10850 Struct cstr 12460 ℂfldccnfld 13540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-addf 7935 ax-mulf 7936 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-tp 3602 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-5 8983 df-6 8984 df-7 8985 df-8 8986 df-9 8987 df-n0 9179 df-z 9256 df-dec 9387 df-uz 9531 df-fz 10011 df-cj 10853 df-struct 12466 df-ndx 12467 df-slot 12468 df-base 12470 df-plusg 12551 df-mulr 12552 df-starv 12553 df-icnfld 13541 |
This theorem is referenced by: cnfldex 13543 cnfldbas 13544 cnfldadd 13545 cnfldmul 13546 cnfldcj 13547 |
Copyright terms: Public domain | W3C validator |