![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnfldstr | GIF version |
Description: The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
Ref | Expression |
---|---|
cnfldstr | ⊢ ℂfld Struct 〈1, ;13〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-icnfld 14048 | . . . 4 ⊢ ℂfld = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) | |
2 | cnex 7996 | . . . . 5 ⊢ ℂ ∈ V | |
3 | 2 | a1i 9 | . . . 4 ⊢ (⊤ → ℂ ∈ V) |
4 | addex 9717 | . . . . 5 ⊢ + ∈ V | |
5 | 4 | a1i 9 | . . . 4 ⊢ (⊤ → + ∈ V) |
6 | mulex 9718 | . . . . 5 ⊢ · ∈ V | |
7 | 6 | a1i 9 | . . . 4 ⊢ (⊤ → · ∈ V) |
8 | cjf 10991 | . . . . . 6 ⊢ ∗:ℂ⟶ℂ | |
9 | fex 5787 | . . . . . 6 ⊢ ((∗:ℂ⟶ℂ ∧ ℂ ∈ V) → ∗ ∈ V) | |
10 | 8, 2, 9 | mp2an 426 | . . . . 5 ⊢ ∗ ∈ V |
11 | 10 | a1i 9 | . . . 4 ⊢ (⊤ → ∗ ∈ V) |
12 | 1, 3, 5, 7, 11 | srngstrd 12763 | . . 3 ⊢ (⊤ → ℂfld Struct 〈1, 4〉) |
13 | 4z 9347 | . . . . 5 ⊢ 4 ∈ ℤ | |
14 | 1nn0 9256 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
15 | 3nn 9144 | . . . . . . 7 ⊢ 3 ∈ ℕ | |
16 | 14, 15 | decnncl 9467 | . . . . . 6 ⊢ ;13 ∈ ℕ |
17 | 16 | nnzi 9338 | . . . . 5 ⊢ ;13 ∈ ℤ |
18 | 1nn 8993 | . . . . . 6 ⊢ 1 ∈ ℕ | |
19 | 3nn0 9258 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
20 | 4nn0 9259 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
21 | 4re 9059 | . . . . . . 7 ⊢ 4 ∈ ℝ | |
22 | 9re 9069 | . . . . . . 7 ⊢ 9 ∈ ℝ | |
23 | 4lt9 9183 | . . . . . . 7 ⊢ 4 < 9 | |
24 | 21, 22, 23 | ltleii 8122 | . . . . . 6 ⊢ 4 ≤ 9 |
25 | 18, 19, 20, 24 | declei 9483 | . . . . 5 ⊢ 4 ≤ ;13 |
26 | eluz2 9598 | . . . . 5 ⊢ (;13 ∈ (ℤ≥‘4) ↔ (4 ∈ ℤ ∧ ;13 ∈ ℤ ∧ 4 ≤ ;13)) | |
27 | 13, 17, 25, 26 | mpbir3an 1181 | . . . 4 ⊢ ;13 ∈ (ℤ≥‘4) |
28 | 27 | a1i 9 | . . 3 ⊢ (⊤ → ;13 ∈ (ℤ≥‘4)) |
29 | 12, 28 | strext 12723 | . 2 ⊢ (⊤ → ℂfld Struct 〈1, ;13〉) |
30 | 29 | mptru 1373 | 1 ⊢ ℂfld Struct 〈1, ;13〉 |
Colors of variables: wff set class |
Syntax hints: ⊤wtru 1365 ∈ wcel 2164 Vcvv 2760 〈cop 3621 class class class wbr 4029 ⟶wf 5250 ‘cfv 5254 ℂcc 7870 1c1 7873 + caddc 7875 · cmul 7877 ≤ cle 8055 3c3 9034 4c4 9035 9c9 9040 ℤcz 9317 ;cdc 9448 ℤ≥cuz 9592 ∗ccj 10983 Struct cstr 12614 ℂfldccnfld 14047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-addf 7994 ax-mulf 7995 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-tp 3626 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 df-n0 9241 df-z 9318 df-dec 9449 df-uz 9593 df-fz 10075 df-cj 10986 df-struct 12620 df-ndx 12621 df-slot 12622 df-base 12624 df-plusg 12708 df-mulr 12709 df-starv 12710 df-icnfld 14048 |
This theorem is referenced by: cnfldex 14050 cnfldbas 14051 cnfldadd 14052 cnfldmul 14054 cnfldcj 14056 |
Copyright terms: Public domain | W3C validator |