ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnfldstr GIF version

Theorem cnfldstr 14192
Description: The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
Assertion
Ref Expression
cnfldstr fld Struct ⟨1, 13⟩

Proof of Theorem cnfldstr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnfld 14191 . 2 fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
2 eqid 2196 . . . . 5 ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
3 cnex 8022 . . . . . 6 ℂ ∈ V
43a1i 9 . . . . 5 (⊤ → ℂ ∈ V)
53, 3mpoex 6281 . . . . . 6 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) ∈ V
65a1i 9 . . . . 5 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) ∈ V)
73, 3mpoex 6281 . . . . . 6 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ∈ V
87a1i 9 . . . . 5 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ∈ V)
9 cjf 11031 . . . . . . 7 ∗:ℂ⟶ℂ
10 fex 5794 . . . . . . 7 ((∗:ℂ⟶ℂ ∧ ℂ ∈ V) → ∗ ∈ V)
119, 3, 10mp2an 426 . . . . . 6 ∗ ∈ V
1211a1i 9 . . . . 5 (⊤ → ∗ ∈ V)
132, 4, 6, 8, 12srngstrd 12850 . . . 4 (⊤ → ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) Struct ⟨1, 4⟩)
1413mptru 1373 . . 3 ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) Struct ⟨1, 4⟩
15 cntopex 14188 . . . . 5 (MetOpen‘(abs ∘ − )) ∈ V
16 xrex 9950 . . . . . . 7 * ∈ V
1716, 16xpex 4779 . . . . . 6 (ℝ* × ℝ*) ∈ V
18 lerelxr 8108 . . . . . 6 ≤ ⊆ (ℝ* × ℝ*)
1917, 18ssexi 4172 . . . . 5 ≤ ∈ V
20 cndsex 14187 . . . . 5 (abs ∘ − ) ∈ V
21 9nn 9178 . . . . . 6 9 ∈ ℕ
22 tsetndx 12890 . . . . . 6 (TopSet‘ndx) = 9
23 9lt10 9606 . . . . . 6 9 < 10
24 10nn 9491 . . . . . 6 10 ∈ ℕ
25 plendx 12904 . . . . . 6 (le‘ndx) = 10
26 1nn0 9284 . . . . . . 7 1 ∈ ℕ0
27 0nn0 9283 . . . . . . 7 0 ∈ ℕ0
28 2nn 9171 . . . . . . 7 2 ∈ ℕ
29 2pos 9100 . . . . . . 7 0 < 2
3026, 27, 28, 29declt 9503 . . . . . 6 10 < 12
3126, 28decnncl 9495 . . . . . 6 12 ∈ ℕ
32 dsndx 12919 . . . . . 6 (dist‘ndx) = 12
3321, 22, 23, 24, 25, 30, 31, 32strle3g 12813 . . . . 5 (((MetOpen‘(abs ∘ − )) ∈ V ∧ ≤ ∈ V ∧ (abs ∘ − ) ∈ V) → {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} Struct ⟨9, 12⟩)
3415, 19, 20, 33mp3an 1348 . . . 4 {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} Struct ⟨9, 12⟩
35 metuex 14189 . . . . 5 ((abs ∘ − ) ∈ V → (metUnif‘(abs ∘ − )) ∈ V)
36 3nn 9172 . . . . . . 7 3 ∈ ℕ
3726, 36decnncl 9495 . . . . . 6 13 ∈ ℕ
38 unifndx 12930 . . . . . 6 (UnifSet‘ndx) = 13
3937, 38strle1g 12811 . . . . 5 ((metUnif‘(abs ∘ − )) ∈ V → {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩} Struct ⟨13, 13⟩)
4020, 35, 39mp2b 8 . . . 4 {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩} Struct ⟨13, 13⟩
41 2nn0 9285 . . . . 5 2 ∈ ℕ0
42 2lt3 9180 . . . . 5 2 < 3
4326, 41, 36, 42declt 9503 . . . 4 12 < 13
4434, 40, 43strleun 12809 . . 3 ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) Struct ⟨9, 13⟩
45 4lt9 9211 . . 3 4 < 9
4614, 44, 45strleun 12809 . 2 (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) Struct ⟨1, 13⟩
471, 46eqbrtri 4055 1 fld Struct ⟨1, 13⟩
Colors of variables: wff set class
Syntax hints:  wtru 1365  wcel 2167  Vcvv 2763  cun 3155  {csn 3623  {ctp 3625  cop 3626   class class class wbr 4034   × cxp 4662  ccom 4668  wf 5255  cfv 5259  (class class class)co 5925  cmpo 5927  cc 7896  0cc0 7898  1c1 7899   + caddc 7901   · cmul 7903  *cxr 8079  cle 8081  cmin 8216  2c2 9060  3c3 9061  4c4 9062  9c9 9067  cdc 9476  ccj 11023  abscabs 11181   Struct cstr 12701  ndxcnx 12702  Basecbs 12705  +gcplusg 12782  .rcmulr 12783  *𝑟cstv 12784  TopSetcts 12788  lecple 12789  distcds 12791  UnifSetcunif 12792  MetOpencmopn 14175  metUnifcmetu 14176  fldccnfld 14190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-9 9075  df-n0 9269  df-z 9346  df-dec 9477  df-uz 9621  df-rp 9748  df-fz 10103  df-cj 11026  df-abs 11183  df-struct 12707  df-ndx 12708  df-slot 12709  df-base 12711  df-plusg 12795  df-mulr 12796  df-starv 12797  df-tset 12801  df-ple 12802  df-ds 12804  df-unif 12805  df-topgen 12964  df-bl 14180  df-mopn 14181  df-fg 14183  df-metu 14184  df-cnfld 14191
This theorem is referenced by:  cnfldex  14193  cnfldbas  14194  mpocnfldadd  14195  mpocnfldmul  14197  cnfldcj  14199  cnfldtset  14200  cnfldle  14201  cnfldds  14202
  Copyright terms: Public domain W3C validator