![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > icossico | GIF version |
Description: Condition for a closed-below, open-above interval to be a subset of a closed-below, open-above interval. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
Ref | Expression |
---|---|
icossico | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶[,)𝐷) ⊆ (𝐴[,)𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ico 9896 | . 2 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
2 | xrletr 9810 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝑤) → 𝐴 ≤ 𝑤)) | |
3 | xrltletr 9809 | . 2 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 < 𝐷 ∧ 𝐷 ≤ 𝐵) → 𝑤 < 𝐵)) | |
4 | 1, 1, 2, 3 | ixxss12 9908 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶[,)𝐷) ⊆ (𝐴[,)𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 ⊆ wss 3131 class class class wbr 4005 (class class class)co 5877 ℝ*cxr 7993 < clt 7994 ≤ cle 7995 [,)cico 9892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-po 4298 df-iso 4299 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-ico 9896 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |