ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elicore GIF version

Theorem elicore 10473
Description: A member of a left-closed right-open interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
elicore ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ)

Proof of Theorem elicore
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ico 10078 . . . . . . 7 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
21elixx3g 10085 . . . . . 6 (𝐶 ∈ (𝐴[,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐶𝐶 < 𝐵)))
32biimpi 120 . . . . 5 (𝐶 ∈ (𝐴[,)𝐵) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐶𝐶 < 𝐵)))
43simpld 112 . . . 4 (𝐶 ∈ (𝐴[,)𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
54simp3d 1035 . . 3 (𝐶 ∈ (𝐴[,)𝐵) → 𝐶 ∈ ℝ*)
65adantl 277 . 2 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ*)
7 simpl 109 . 2 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐴 ∈ ℝ)
83simprd 114 . . . 4 (𝐶 ∈ (𝐴[,)𝐵) → (𝐴𝐶𝐶 < 𝐵))
98simpld 112 . . 3 (𝐶 ∈ (𝐴[,)𝐵) → 𝐴𝐶)
109adantl 277 . 2 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐴𝐶)
114simp2d 1034 . . . 4 (𝐶 ∈ (𝐴[,)𝐵) → 𝐵 ∈ ℝ*)
1211adantl 277 . . 3 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐵 ∈ ℝ*)
13 pnfxr 8187 . . . 4 +∞ ∈ ℝ*
1413a1i 9 . . 3 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → +∞ ∈ ℝ*)
158simprd 114 . . . 4 (𝐶 ∈ (𝐴[,)𝐵) → 𝐶 < 𝐵)
1615adantl 277 . . 3 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 < 𝐵)
17 pnfge 9973 . . . . 5 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
1811, 17syl 14 . . . 4 (𝐶 ∈ (𝐴[,)𝐵) → 𝐵 ≤ +∞)
1918adantl 277 . . 3 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐵 ≤ +∞)
206, 12, 14, 16, 19xrltletrd 9995 . 2 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 < +∞)
21 xrre3 10006 . 2 (((𝐶 ∈ ℝ*𝐴 ∈ ℝ) ∧ (𝐴𝐶𝐶 < +∞)) → 𝐶 ∈ ℝ)
226, 7, 10, 20, 21syl22anc 1272 1 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002  wcel 2200   class class class wbr 4082  (class class class)co 5994  cr 7986  +∞cpnf 8166  *cxr 8168   < clt 8169  cle 8170  [,)cico 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4381  df-po 4384  df-iso 4385  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-iota 5274  df-fun 5316  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-ico 10078
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator