ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elicore GIF version

Theorem elicore 10159
Description: A member of a left-closed right-open interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
elicore ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ)

Proof of Theorem elicore
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ico 9791 . . . . . . 7 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
21elixx3g 9798 . . . . . 6 (𝐶 ∈ (𝐴[,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐶𝐶 < 𝐵)))
32biimpi 119 . . . . 5 (𝐶 ∈ (𝐴[,)𝐵) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐶𝐶 < 𝐵)))
43simpld 111 . . . 4 (𝐶 ∈ (𝐴[,)𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
54simp3d 996 . . 3 (𝐶 ∈ (𝐴[,)𝐵) → 𝐶 ∈ ℝ*)
65adantl 275 . 2 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ*)
7 simpl 108 . 2 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐴 ∈ ℝ)
83simprd 113 . . . 4 (𝐶 ∈ (𝐴[,)𝐵) → (𝐴𝐶𝐶 < 𝐵))
98simpld 111 . . 3 (𝐶 ∈ (𝐴[,)𝐵) → 𝐴𝐶)
109adantl 275 . 2 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐴𝐶)
114simp2d 995 . . . 4 (𝐶 ∈ (𝐴[,)𝐵) → 𝐵 ∈ ℝ*)
1211adantl 275 . . 3 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐵 ∈ ℝ*)
13 pnfxr 7924 . . . 4 +∞ ∈ ℝ*
1413a1i 9 . . 3 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → +∞ ∈ ℝ*)
158simprd 113 . . . 4 (𝐶 ∈ (𝐴[,)𝐵) → 𝐶 < 𝐵)
1615adantl 275 . . 3 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 < 𝐵)
17 pnfge 9689 . . . . 5 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
1811, 17syl 14 . . . 4 (𝐶 ∈ (𝐴[,)𝐵) → 𝐵 ≤ +∞)
1918adantl 275 . . 3 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐵 ≤ +∞)
206, 12, 14, 16, 19xrltletrd 9708 . 2 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 < +∞)
21 xrre3 9719 . 2 (((𝐶 ∈ ℝ*𝐴 ∈ ℝ) ∧ (𝐴𝐶𝐶 < +∞)) → 𝐶 ∈ ℝ)
226, 7, 10, 20, 21syl22anc 1221 1 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963  wcel 2128   class class class wbr 3965  (class class class)co 5821  cr 7725  +∞cpnf 7903  *cxr 7905   < clt 7906  cle 7907  [,)cico 9787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7817  ax-resscn 7818  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4253  df-po 4256  df-iso 4257  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-iota 5134  df-fun 5171  df-fv 5177  df-ov 5824  df-oprab 5825  df-mpo 5826  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-ico 9791
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator