| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elicore | GIF version | ||
| Description: A member of a left-closed right-open interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| elicore | ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ico 10031 | . . . . . . 7 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 2 | 1 | elixx3g 10038 | . . . . . 6 ⊢ (𝐶 ∈ (𝐴[,)𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
| 3 | 2 | biimpi 120 | . . . . 5 ⊢ (𝐶 ∈ (𝐴[,)𝐵) → ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
| 4 | 3 | simpld 112 | . . . 4 ⊢ (𝐶 ∈ (𝐴[,)𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) |
| 5 | 4 | simp3d 1014 | . . 3 ⊢ (𝐶 ∈ (𝐴[,)𝐵) → 𝐶 ∈ ℝ*) |
| 6 | 5 | adantl 277 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ*) |
| 7 | simpl 109 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐴 ∈ ℝ) | |
| 8 | 3 | simprd 114 | . . . 4 ⊢ (𝐶 ∈ (𝐴[,)𝐵) → (𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) |
| 9 | 8 | simpld 112 | . . 3 ⊢ (𝐶 ∈ (𝐴[,)𝐵) → 𝐴 ≤ 𝐶) |
| 10 | 9 | adantl 277 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐴 ≤ 𝐶) |
| 11 | 4 | simp2d 1013 | . . . 4 ⊢ (𝐶 ∈ (𝐴[,)𝐵) → 𝐵 ∈ ℝ*) |
| 12 | 11 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐵 ∈ ℝ*) |
| 13 | pnfxr 8140 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 14 | 13 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → +∞ ∈ ℝ*) |
| 15 | 8 | simprd 114 | . . . 4 ⊢ (𝐶 ∈ (𝐴[,)𝐵) → 𝐶 < 𝐵) |
| 16 | 15 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 < 𝐵) |
| 17 | pnfge 9926 | . . . . 5 ⊢ (𝐵 ∈ ℝ* → 𝐵 ≤ +∞) | |
| 18 | 11, 17 | syl 14 | . . . 4 ⊢ (𝐶 ∈ (𝐴[,)𝐵) → 𝐵 ≤ +∞) |
| 19 | 18 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐵 ≤ +∞) |
| 20 | 6, 12, 14, 16, 19 | xrltletrd 9948 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 < +∞) |
| 21 | xrre3 9959 | . 2 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐴 ∈ ℝ) ∧ (𝐴 ≤ 𝐶 ∧ 𝐶 < +∞)) → 𝐶 ∈ ℝ) | |
| 22 | 6, 7, 10, 20, 21 | syl22anc 1251 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 ∈ wcel 2177 class class class wbr 4050 (class class class)co 5956 ℝcr 7939 +∞cpnf 8119 ℝ*cxr 8121 < clt 8122 ≤ cle 8123 [,)cico 10027 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-id 4347 df-po 4350 df-iso 4351 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-iota 5240 df-fun 5281 df-fv 5287 df-ov 5959 df-oprab 5960 df-mpo 5961 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-ico 10031 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |