ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elicore GIF version

Theorem elicore 10281
Description: A member of a left-closed right-open interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
elicore ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ)

Proof of Theorem elicore
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ico 9908 . . . . . . 7 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
21elixx3g 9915 . . . . . 6 (𝐶 ∈ (𝐴[,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐶𝐶 < 𝐵)))
32biimpi 120 . . . . 5 (𝐶 ∈ (𝐴[,)𝐵) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐶𝐶 < 𝐵)))
43simpld 112 . . . 4 (𝐶 ∈ (𝐴[,)𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
54simp3d 1012 . . 3 (𝐶 ∈ (𝐴[,)𝐵) → 𝐶 ∈ ℝ*)
65adantl 277 . 2 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ*)
7 simpl 109 . 2 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐴 ∈ ℝ)
83simprd 114 . . . 4 (𝐶 ∈ (𝐴[,)𝐵) → (𝐴𝐶𝐶 < 𝐵))
98simpld 112 . . 3 (𝐶 ∈ (𝐴[,)𝐵) → 𝐴𝐶)
109adantl 277 . 2 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐴𝐶)
114simp2d 1011 . . . 4 (𝐶 ∈ (𝐴[,)𝐵) → 𝐵 ∈ ℝ*)
1211adantl 277 . . 3 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐵 ∈ ℝ*)
13 pnfxr 8024 . . . 4 +∞ ∈ ℝ*
1413a1i 9 . . 3 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → +∞ ∈ ℝ*)
158simprd 114 . . . 4 (𝐶 ∈ (𝐴[,)𝐵) → 𝐶 < 𝐵)
1615adantl 277 . . 3 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 < 𝐵)
17 pnfge 9803 . . . . 5 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
1811, 17syl 14 . . . 4 (𝐶 ∈ (𝐴[,)𝐵) → 𝐵 ≤ +∞)
1918adantl 277 . . 3 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐵 ≤ +∞)
206, 12, 14, 16, 19xrltletrd 9825 . 2 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 < +∞)
21 xrre3 9836 . 2 (((𝐶 ∈ ℝ*𝐴 ∈ ℝ) ∧ (𝐴𝐶𝐶 < +∞)) → 𝐶 ∈ ℝ)
226, 7, 10, 20, 21syl22anc 1249 1 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 979  wcel 2158   class class class wbr 4015  (class class class)co 5888  cr 7824  +∞cpnf 8003  *cxr 8005   < clt 8006  cle 8007  [,)cico 9904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-id 4305  df-po 4308  df-iso 4309  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-iota 5190  df-fun 5230  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-ico 9908
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator