Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iccssico2 | GIF version |
Description: Condition for a closed interval to be a subset of a closed-below, open-above interval. (Contributed by Mario Carneiro, 20-Feb-2015.) |
Ref | Expression |
---|---|
iccssico2 | ⊢ ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,)𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ico 9838 | . . . 4 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
2 | 1 | elmpocl1 6045 | . . 3 ⊢ (𝐶 ∈ (𝐴[,)𝐵) → 𝐴 ∈ ℝ*) |
3 | 2 | adantr 274 | . 2 ⊢ ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → 𝐴 ∈ ℝ*) |
4 | 1 | elmpocl2 6046 | . . 3 ⊢ (𝐶 ∈ (𝐴[,)𝐵) → 𝐵 ∈ ℝ*) |
5 | 4 | adantr 274 | . 2 ⊢ ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → 𝐵 ∈ ℝ*) |
6 | 1 | elixx3g 9845 | . . . . 5 ⊢ (𝐶 ∈ (𝐴[,)𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
7 | 6 | simprbi 273 | . . . 4 ⊢ (𝐶 ∈ (𝐴[,)𝐵) → (𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) |
8 | 7 | simpld 111 | . . 3 ⊢ (𝐶 ∈ (𝐴[,)𝐵) → 𝐴 ≤ 𝐶) |
9 | 8 | adantr 274 | . 2 ⊢ ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → 𝐴 ≤ 𝐶) |
10 | 1 | elixx3g 9845 | . . . . 5 ⊢ (𝐷 ∈ (𝐴[,)𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ*) ∧ (𝐴 ≤ 𝐷 ∧ 𝐷 < 𝐵))) |
11 | 10 | simprbi 273 | . . . 4 ⊢ (𝐷 ∈ (𝐴[,)𝐵) → (𝐴 ≤ 𝐷 ∧ 𝐷 < 𝐵)) |
12 | 11 | simprd 113 | . . 3 ⊢ (𝐷 ∈ (𝐴[,)𝐵) → 𝐷 < 𝐵) |
13 | 12 | adantl 275 | . 2 ⊢ ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → 𝐷 < 𝐵) |
14 | iccssico 9889 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 < 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,)𝐵)) | |
15 | 3, 5, 9, 13, 14 | syl22anc 1234 | 1 ⊢ ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,)𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 ∈ wcel 2141 {crab 2452 ⊆ wss 3121 class class class wbr 3987 (class class class)co 5850 ℝ*cxr 7940 < clt 7941 ≤ cle 7942 [,)cico 9834 [,]cicc 9835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-id 4276 df-po 4279 df-iso 4280 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-ov 5853 df-oprab 5854 df-mpo 5855 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-ico 9838 df-icc 9839 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |