ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccssico2 GIF version

Theorem iccssico2 9883
Description: Condition for a closed interval to be a subset of a closed-below, open-above interval. (Contributed by Mario Carneiro, 20-Feb-2015.)
Assertion
Ref Expression
iccssico2 ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,)𝐵))

Proof of Theorem iccssico2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ico 9830 . . . 4 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
21elmpocl1 6037 . . 3 (𝐶 ∈ (𝐴[,)𝐵) → 𝐴 ∈ ℝ*)
32adantr 274 . 2 ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → 𝐴 ∈ ℝ*)
41elmpocl2 6038 . . 3 (𝐶 ∈ (𝐴[,)𝐵) → 𝐵 ∈ ℝ*)
54adantr 274 . 2 ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → 𝐵 ∈ ℝ*)
61elixx3g 9837 . . . . 5 (𝐶 ∈ (𝐴[,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐶𝐶 < 𝐵)))
76simprbi 273 . . . 4 (𝐶 ∈ (𝐴[,)𝐵) → (𝐴𝐶𝐶 < 𝐵))
87simpld 111 . . 3 (𝐶 ∈ (𝐴[,)𝐵) → 𝐴𝐶)
98adantr 274 . 2 ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → 𝐴𝐶)
101elixx3g 9837 . . . . 5 (𝐷 ∈ (𝐴[,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴𝐷𝐷 < 𝐵)))
1110simprbi 273 . . . 4 (𝐷 ∈ (𝐴[,)𝐵) → (𝐴𝐷𝐷 < 𝐵))
1211simprd 113 . . 3 (𝐷 ∈ (𝐴[,)𝐵) → 𝐷 < 𝐵)
1312adantl 275 . 2 ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → 𝐷 < 𝐵)
14 iccssico 9881 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝐶𝐷 < 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,)𝐵))
153, 5, 9, 13, 14syl22anc 1229 1 ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,)𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968  wcel 2136  {crab 2448  wss 3116   class class class wbr 3982  (class class class)co 5842  *cxr 7932   < clt 7933  cle 7934  [,)cico 9826  [,]cicc 9827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-ico 9830  df-icc 9831
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator