ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ihash GIF version

Definition df-ihash 11006
Description: Define the set size function , which gives the cardinality of a finite set as a member of 0, and assigns all infinite sets the value +∞. For example, (♯‘{0, 1, 2}) = 3.

Since we don't know that an arbitrary set is either finite or infinite (by inffiexmid 7076), the behavior beyond finite sets is not as useful as it might appear. For example, we wouldn't expect to be able to define this function in a meaningful way on 𝒫 1o, which cannot be shown to be finite (per pw1fin 7080).

Note that we use the sharp sign () for this function and we use the different character octothorpe (#) for the apartness relation (see df-ap 8737). We adopt the former notation from Corollary 8.2.4 of [AczelRathjen], p. 80 (although that work only defines it for finite sets).

This definition (in terms of and ) is not taken directly from the literature, but for finite sets should be equivalent to the conventional definition that the size of a finite set is the unique natural number which is equinumerous to the given set. (Contributed by Jim Kingdon, 19-Feb-2022.)

Assertion
Ref Expression
df-ihash ♯ = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-ihash
StepHypRef Expression
1 chash 11005 . 2 class
2 vx . . . . . 6 setvar 𝑥
3 cz 9454 . . . . . 6 class
42cv 1394 . . . . . . 7 class 𝑥
5 c1 8008 . . . . . . 7 class 1
6 caddc 8010 . . . . . . 7 class +
74, 5, 6co 6007 . . . . . 6 class (𝑥 + 1)
82, 3, 7cmpt 4145 . . . . 5 class (𝑥 ∈ ℤ ↦ (𝑥 + 1))
9 cc0 8007 . . . . 5 class 0
108, 9cfrec 6542 . . . 4 class frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
11 com 4682 . . . . . 6 class ω
12 cpnf 8186 . . . . . 6 class +∞
1311, 12cop 3669 . . . . 5 class ⟨ω, +∞⟩
1413csn 3666 . . . 4 class {⟨ω, +∞⟩}
1510, 14cun 3195 . . 3 class (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})
16 cvv 2799 . . . 4 class V
17 vy . . . . . . . 8 setvar 𝑦
1817cv 1394 . . . . . . 7 class 𝑦
19 cdom 6894 . . . . . . 7 class
2018, 4, 19wbr 4083 . . . . . 6 wff 𝑦𝑥
2111csn 3666 . . . . . . 7 class {ω}
2211, 21cun 3195 . . . . . 6 class (ω ∪ {ω})
2320, 17, 22crab 2512 . . . . 5 class {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}
2423cuni 3888 . . . 4 class {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}
252, 16, 24cmpt 4145 . . 3 class (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})
2615, 25ccom 4723 . 2 class ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
271, 26wceq 1395 1 wff ♯ = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
Colors of variables: wff set class
This definition is referenced by:  hashinfom  11008  hashennn  11010
  Copyright terms: Public domain W3C validator