| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-ihash | GIF version | ||
| Description: Define the set size
function ♯, which gives the cardinality of a
       finite set as a member of ℕ0,
and assigns all infinite sets the
       value +∞.  For example, (♯‘{0, 1, 2}) = 3.
 Note that we use the sharp sign (♯) for this function and we use the different character octothorpe (#) for the apartness relation (see df-ap 8609). We adopt the former notation from Corollary 8.2.4 of [AczelRathjen], p. 80 (although that work only defines it for finite sets). This definition (in terms of ∪ and ≼) is not taken directly from the literature, but for finite sets should be equivalent to the conventional definition that the size of a finite set is the unique natural number which is equinumerous to the given set. (Contributed by Jim Kingdon, 19-Feb-2022.)  | 
| Ref | Expression | 
|---|---|
| df-ihash | ⊢ ♯ = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω, +∞〉}) ∘ (𝑥 ∈ V ↦ ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | chash 10867 | . 2 class ♯ | |
| 2 | vx | . . . . . 6 setvar 𝑥 | |
| 3 | cz 9326 | . . . . . 6 class ℤ | |
| 4 | 2 | cv 1363 | . . . . . . 7 class 𝑥 | 
| 5 | c1 7880 | . . . . . . 7 class 1 | |
| 6 | caddc 7882 | . . . . . . 7 class + | |
| 7 | 4, 5, 6 | co 5922 | . . . . . 6 class (𝑥 + 1) | 
| 8 | 2, 3, 7 | cmpt 4094 | . . . . 5 class (𝑥 ∈ ℤ ↦ (𝑥 + 1)) | 
| 9 | cc0 7879 | . . . . 5 class 0 | |
| 10 | 8, 9 | cfrec 6448 | . . . 4 class frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | 
| 11 | com 4626 | . . . . . 6 class ω | |
| 12 | cpnf 8058 | . . . . . 6 class +∞ | |
| 13 | 11, 12 | cop 3625 | . . . . 5 class 〈ω, +∞〉 | 
| 14 | 13 | csn 3622 | . . . 4 class {〈ω, +∞〉} | 
| 15 | 10, 14 | cun 3155 | . . 3 class (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω, +∞〉}) | 
| 16 | cvv 2763 | . . . 4 class V | |
| 17 | vy | . . . . . . . 8 setvar 𝑦 | |
| 18 | 17 | cv 1363 | . . . . . . 7 class 𝑦 | 
| 19 | cdom 6798 | . . . . . . 7 class ≼ | |
| 20 | 18, 4, 19 | wbr 4033 | . . . . . 6 wff 𝑦 ≼ 𝑥 | 
| 21 | 11 | csn 3622 | . . . . . . 7 class {ω} | 
| 22 | 11, 21 | cun 3155 | . . . . . 6 class (ω ∪ {ω}) | 
| 23 | 20, 17, 22 | crab 2479 | . . . . 5 class {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥} | 
| 24 | 23 | cuni 3839 | . . . 4 class ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥} | 
| 25 | 2, 16, 24 | cmpt 4094 | . . 3 class (𝑥 ∈ V ↦ ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}) | 
| 26 | 15, 25 | ccom 4667 | . 2 class ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω, +∞〉}) ∘ (𝑥 ∈ V ↦ ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})) | 
| 27 | 1, 26 | wceq 1364 | 1 wff ♯ = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω, +∞〉}) ∘ (𝑥 ∈ V ↦ ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})) | 
| Colors of variables: wff set class | 
| This definition is referenced by: hashinfom 10870 hashennn 10872 | 
| Copyright terms: Public domain | W3C validator |