ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ihash GIF version

Definition df-ihash 10965
Description: Define the set size function , which gives the cardinality of a finite set as a member of 0, and assigns all infinite sets the value +∞. For example, (♯‘{0, 1, 2}) = 3.

Since we don't know that an arbitrary set is either finite or infinite (by inffiexmid 7036), the behavior beyond finite sets is not as useful as it might appear. For example, we wouldn't expect to be able to define this function in a meaningful way on 𝒫 1o, which cannot be shown to be finite (per pw1fin 7040).

Note that we use the sharp sign () for this function and we use the different character octothorpe (#) for the apartness relation (see df-ap 8697). We adopt the former notation from Corollary 8.2.4 of [AczelRathjen], p. 80 (although that work only defines it for finite sets).

This definition (in terms of and ) is not taken directly from the literature, but for finite sets should be equivalent to the conventional definition that the size of a finite set is the unique natural number which is equinumerous to the given set. (Contributed by Jim Kingdon, 19-Feb-2022.)

Assertion
Ref Expression
df-ihash ♯ = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-ihash
StepHypRef Expression
1 chash 10964 . 2 class
2 vx . . . . . 6 setvar 𝑥
3 cz 9414 . . . . . 6 class
42cv 1374 . . . . . . 7 class 𝑥
5 c1 7968 . . . . . . 7 class 1
6 caddc 7970 . . . . . . 7 class +
74, 5, 6co 5974 . . . . . 6 class (𝑥 + 1)
82, 3, 7cmpt 4124 . . . . 5 class (𝑥 ∈ ℤ ↦ (𝑥 + 1))
9 cc0 7967 . . . . 5 class 0
108, 9cfrec 6506 . . . 4 class frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
11 com 4659 . . . . . 6 class ω
12 cpnf 8146 . . . . . 6 class +∞
1311, 12cop 3649 . . . . 5 class ⟨ω, +∞⟩
1413csn 3646 . . . 4 class {⟨ω, +∞⟩}
1510, 14cun 3175 . . 3 class (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})
16 cvv 2779 . . . 4 class V
17 vy . . . . . . . 8 setvar 𝑦
1817cv 1374 . . . . . . 7 class 𝑦
19 cdom 6856 . . . . . . 7 class
2018, 4, 19wbr 4062 . . . . . 6 wff 𝑦𝑥
2111csn 3646 . . . . . . 7 class {ω}
2211, 21cun 3175 . . . . . 6 class (ω ∪ {ω})
2320, 17, 22crab 2492 . . . . 5 class {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}
2423cuni 3867 . . . 4 class {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}
252, 16, 24cmpt 4124 . . 3 class (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})
2615, 25ccom 4700 . 2 class ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
271, 26wceq 1375 1 wff ♯ = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
Colors of variables: wff set class
This definition is referenced by:  hashinfom  10967  hashennn  10969
  Copyright terms: Public domain W3C validator