ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashennn GIF version

Theorem hashennn 10854
Description: The size of a set equinumerous to an element of ω. (Contributed by Jim Kingdon, 21-Feb-2022.)
Assertion
Ref Expression
hashennn ((𝑁 ∈ ω ∧ 𝑁𝐴) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁

Proof of Theorem hashennn
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ihash 10850 . . . . 5 ♯ = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
21fveq1i 5556 . . . 4 (♯‘𝐴) = (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))‘𝐴)
3 funmpt 5293 . . . . 5 Fun (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})
4 hashennnuni 10853 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 𝑁𝐴) → {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} = 𝑁)
54eqcomd 2199 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝑁 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
6 nnfi 6930 . . . . . . . . . . 11 (𝑁 ∈ ω → 𝑁 ∈ Fin)
76adantr 276 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝑁 ∈ Fin)
8 simpr 110 . . . . . . . . . . 11 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝑁𝐴)
98ensymd 6839 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝐴𝑁)
10 enfii 6932 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝐴𝑁) → 𝐴 ∈ Fin)
117, 9, 10syl2anc 411 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝐴 ∈ Fin)
12 simpl 109 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝑁 ∈ ω)
13 simpr 110 . . . . . . . . . . 11 ((𝑥 = 𝐴𝑧 = 𝑁) → 𝑧 = 𝑁)
14 breq2 4034 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (𝑦𝑥𝑦𝐴))
1514adantr 276 . . . . . . . . . . . . 13 ((𝑥 = 𝐴𝑧 = 𝑁) → (𝑦𝑥𝑦𝐴))
1615rabbidv 2749 . . . . . . . . . . . 12 ((𝑥 = 𝐴𝑧 = 𝑁) → {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥} = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
1716unieqd 3847 . . . . . . . . . . 11 ((𝑥 = 𝐴𝑧 = 𝑁) → {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥} = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
1813, 17eqeq12d 2208 . . . . . . . . . 10 ((𝑥 = 𝐴𝑧 = 𝑁) → (𝑧 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥} ↔ 𝑁 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}))
1918opelopabga 4294 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ω) → (⟨𝐴, 𝑁⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ 𝑧 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}} ↔ 𝑁 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}))
2011, 12, 19syl2anc 411 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑁𝐴) → (⟨𝐴, 𝑁⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ 𝑧 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}} ↔ 𝑁 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}))
215, 20mpbird 167 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑁𝐴) → ⟨𝐴, 𝑁⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ 𝑧 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}})
22 mptv 4127 . . . . . . 7 (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) = {⟨𝑥, 𝑧⟩ ∣ 𝑧 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}}
2321, 22eleqtrrdi 2287 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑁𝐴) → ⟨𝐴, 𝑁⟩ ∈ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
24 opeldmg 4868 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ω) → (⟨𝐴, 𝑁⟩ ∈ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) → 𝐴 ∈ dom (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})))
2511, 12, 24syl2anc 411 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑁𝐴) → (⟨𝐴, 𝑁⟩ ∈ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) → 𝐴 ∈ dom (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})))
2623, 25mpd 13 . . . . 5 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝐴 ∈ dom (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
27 fvco 5628 . . . . 5 ((Fun (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) ∧ 𝐴 ∈ dom (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})) → (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)))
283, 26, 27sylancr 414 . . . 4 ((𝑁 ∈ ω ∧ 𝑁𝐴) → (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)))
292, 28eqtrid 2238 . . 3 ((𝑁 ∈ ω ∧ 𝑁𝐴) → (♯‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)))
3011elexd 2773 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝐴 ∈ V)
314, 12eqeltrd 2270 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑁𝐴) → {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ∈ ω)
3214rabbidv 2749 . . . . . . . 8 (𝑥 = 𝐴 → {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥} = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
3332unieqd 3847 . . . . . . 7 (𝑥 = 𝐴 {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥} = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
34 eqid 2193 . . . . . . 7 (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) = (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})
3533, 34fvmptg 5634 . . . . . 6 ((𝐴 ∈ V ∧ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ∈ ω) → ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴) = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
3630, 31, 35syl2anc 411 . . . . 5 ((𝑁 ∈ ω ∧ 𝑁𝐴) → ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴) = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
3736, 4eqtrd 2226 . . . 4 ((𝑁 ∈ ω ∧ 𝑁𝐴) → ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴) = 𝑁)
3837fveq2d 5559 . . 3 ((𝑁 ∈ ω ∧ 𝑁𝐴) → ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘𝑁))
3929, 38eqtrd 2226 . 2 ((𝑁 ∈ ω ∧ 𝑁𝐴) → (♯‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘𝑁))
40 ordom 4640 . . . . . . 7 Ord ω
41 ordirr 4575 . . . . . . 7 (Ord ω → ¬ ω ∈ ω)
4240, 41ax-mp 5 . . . . . 6 ¬ ω ∈ ω
43 eleq1 2256 . . . . . 6 (ω = 𝑁 → (ω ∈ ω ↔ 𝑁 ∈ ω))
4442, 43mtbii 675 . . . . 5 (ω = 𝑁 → ¬ 𝑁 ∈ ω)
4544necon2ai 2418 . . . 4 (𝑁 ∈ ω → ω ≠ 𝑁)
46 fvunsng 5753 . . . 4 ((𝑁 ∈ ω ∧ ω ≠ 𝑁) → ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘𝑁) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))
4745, 46mpdan 421 . . 3 (𝑁 ∈ ω → ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘𝑁) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))
4847adantr 276 . 2 ((𝑁 ∈ ω ∧ 𝑁𝐴) → ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘𝑁) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))
4939, 48eqtrd 2226 1 ((𝑁 ∈ ω ∧ 𝑁𝐴) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wne 2364  {crab 2476  Vcvv 2760  cun 3152  {csn 3619  cop 3622   cuni 3836   class class class wbr 4030  {copab 4090  cmpt 4091  Ord word 4394  ωcom 4623  dom cdm 4660  ccom 4664  Fun wfun 5249  cfv 5255  (class class class)co 5919  freccfrec 6445  cen 6794  cdom 6795  Fincfn 6796  0cc0 7874  1c1 7875   + caddc 7877  +∞cpnf 8053  cz 9320  chash 10849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-ihash 10850
This theorem is referenced by:  hashcl  10855  hashfz1  10857  hashen  10858  fihashdom  10877  hashun  10879
  Copyright terms: Public domain W3C validator