Step | Hyp | Ref
| Expression |
1 | | df-ihash 10689 |
. . . . 5
⊢ ♯ =
((frec((𝑥 ∈ ℤ
↦ (𝑥 + 1)), 0) ∪
{〈ω, +∞〉}) ∘ (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})) |
2 | 1 | fveq1i 5487 |
. . . 4
⊢
(♯‘𝐴) =
(((frec((𝑥 ∈ ℤ
↦ (𝑥 + 1)), 0) ∪
{〈ω, +∞〉}) ∘ (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}))‘𝐴) |
3 | | funmpt 5226 |
. . . . 5
⊢ Fun
(𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}) |
4 | | hashennnuni 10692 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → ∪ {𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝐴} = 𝑁) |
5 | 4 | eqcomd 2171 |
. . . . . . . 8
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → 𝑁 = ∪ {𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝐴}) |
6 | | nnfi 6838 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ω → 𝑁 ∈ Fin) |
7 | 6 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → 𝑁 ∈ Fin) |
8 | | simpr 109 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → 𝑁 ≈ 𝐴) |
9 | 8 | ensymd 6749 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → 𝐴 ≈ 𝑁) |
10 | | enfii 6840 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝐴 ≈ 𝑁) → 𝐴 ∈ Fin) |
11 | 7, 9, 10 | syl2anc 409 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → 𝐴 ∈ Fin) |
12 | | simpl 108 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → 𝑁 ∈ ω) |
13 | | simpr 109 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝐴 ∧ 𝑧 = 𝑁) → 𝑧 = 𝑁) |
14 | | breq2 3986 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐴 → (𝑦 ≼ 𝑥 ↔ 𝑦 ≼ 𝐴)) |
15 | 14 | adantr 274 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝐴 ∧ 𝑧 = 𝑁) → (𝑦 ≼ 𝑥 ↔ 𝑦 ≼ 𝐴)) |
16 | 15 | rabbidv 2715 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝐴 ∧ 𝑧 = 𝑁) → {𝑦 ∈ (ω ∪ {ω}) ∣
𝑦 ≼ 𝑥} = {𝑦 ∈ (ω ∪ {ω}) ∣
𝑦 ≼ 𝐴}) |
17 | 16 | unieqd 3800 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝐴 ∧ 𝑧 = 𝑁) → ∪ {𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝑥} = ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}) |
18 | 13, 17 | eqeq12d 2180 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝐴 ∧ 𝑧 = 𝑁) → (𝑧 = ∪ {𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝑥} ↔ 𝑁 = ∪
{𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝐴})) |
19 | 18 | opelopabga 4241 |
. . . . . . . . 9
⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ω) →
(〈𝐴, 𝑁〉 ∈ {〈𝑥, 𝑧〉 ∣ 𝑧 = ∪ {𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝑥}} ↔ 𝑁 = ∪
{𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝐴})) |
20 | 11, 12, 19 | syl2anc 409 |
. . . . . . . 8
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → (〈𝐴, 𝑁〉 ∈ {〈𝑥, 𝑧〉 ∣ 𝑧 = ∪ {𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝑥}} ↔ 𝑁 = ∪
{𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝐴})) |
21 | 5, 20 | mpbird 166 |
. . . . . . 7
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → 〈𝐴, 𝑁〉 ∈ {〈𝑥, 𝑧〉 ∣ 𝑧 = ∪ {𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝑥}}) |
22 | | mptv 4079 |
. . . . . . 7
⊢ (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}) = {〈𝑥, 𝑧〉 ∣ 𝑧 = ∪ {𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝑥}} |
23 | 21, 22 | eleqtrrdi 2260 |
. . . . . 6
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → 〈𝐴, 𝑁〉 ∈ (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})) |
24 | | opeldmg 4809 |
. . . . . . 7
⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ω) →
(〈𝐴, 𝑁〉 ∈ (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}) → 𝐴 ∈ dom (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}))) |
25 | 11, 12, 24 | syl2anc 409 |
. . . . . 6
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → (〈𝐴, 𝑁〉 ∈ (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}) → 𝐴 ∈ dom (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}))) |
26 | 23, 25 | mpd 13 |
. . . . 5
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → 𝐴 ∈ dom (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})) |
27 | | fvco 5556 |
. . . . 5
⊢ ((Fun
(𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}) ∧ 𝐴 ∈ dom (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})) → (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω,
+∞〉}) ∘ (𝑥
∈ V ↦ ∪ {𝑦 ∈ (ω ∪ {ω}) ∣
𝑦 ≼ 𝑥}))‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω,
+∞〉})‘((𝑥
∈ V ↦ ∪ {𝑦 ∈ (ω ∪ {ω}) ∣
𝑦 ≼ 𝑥})‘𝐴))) |
28 | 3, 26, 27 | sylancr 411 |
. . . 4
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω,
+∞〉}) ∘ (𝑥
∈ V ↦ ∪ {𝑦 ∈ (ω ∪ {ω}) ∣
𝑦 ≼ 𝑥}))‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω,
+∞〉})‘((𝑥
∈ V ↦ ∪ {𝑦 ∈ (ω ∪ {ω}) ∣
𝑦 ≼ 𝑥})‘𝐴))) |
29 | 2, 28 | syl5eq 2211 |
. . 3
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → (♯‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω,
+∞〉})‘((𝑥
∈ V ↦ ∪ {𝑦 ∈ (ω ∪ {ω}) ∣
𝑦 ≼ 𝑥})‘𝐴))) |
30 | 11 | elexd 2739 |
. . . . . 6
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → 𝐴 ∈ V) |
31 | 4, 12 | eqeltrd 2243 |
. . . . . 6
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → ∪ {𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝐴} ∈
ω) |
32 | 14 | rabbidv 2715 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → {𝑦 ∈ (ω ∪ {ω}) ∣
𝑦 ≼ 𝑥} = {𝑦 ∈ (ω ∪ {ω}) ∣
𝑦 ≼ 𝐴}) |
33 | 32 | unieqd 3800 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ∪ {𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝑥} = ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}) |
34 | | eqid 2165 |
. . . . . . 7
⊢ (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}) = (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}) |
35 | 33, 34 | fvmptg 5562 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} ∈ ω) → ((𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})‘𝐴) = ∪ {𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝐴}) |
36 | 30, 31, 35 | syl2anc 409 |
. . . . 5
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → ((𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})‘𝐴) = ∪ {𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝐴}) |
37 | 36, 4 | eqtrd 2198 |
. . . 4
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → ((𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})‘𝐴) = 𝑁) |
38 | 37 | fveq2d 5490 |
. . 3
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω,
+∞〉})‘((𝑥
∈ V ↦ ∪ {𝑦 ∈ (ω ∪ {ω}) ∣
𝑦 ≼ 𝑥})‘𝐴)) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω,
+∞〉})‘𝑁)) |
39 | 29, 38 | eqtrd 2198 |
. 2
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → (♯‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω,
+∞〉})‘𝑁)) |
40 | | ordom 4584 |
. . . . . . 7
⊢ Ord
ω |
41 | | ordirr 4519 |
. . . . . . 7
⊢ (Ord
ω → ¬ ω ∈ ω) |
42 | 40, 41 | ax-mp 5 |
. . . . . 6
⊢ ¬
ω ∈ ω |
43 | | eleq1 2229 |
. . . . . 6
⊢ (ω
= 𝑁 → (ω ∈
ω ↔ 𝑁 ∈
ω)) |
44 | 42, 43 | mtbii 664 |
. . . . 5
⊢ (ω
= 𝑁 → ¬ 𝑁 ∈
ω) |
45 | 44 | necon2ai 2390 |
. . . 4
⊢ (𝑁 ∈ ω → ω
≠ 𝑁) |
46 | | fvunsng 5679 |
. . . 4
⊢ ((𝑁 ∈ ω ∧ ω
≠ 𝑁) →
((frec((𝑥 ∈ ℤ
↦ (𝑥 + 1)), 0) ∪
{〈ω, +∞〉})‘𝑁) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) |
47 | 45, 46 | mpdan 418 |
. . 3
⊢ (𝑁 ∈ ω →
((frec((𝑥 ∈ ℤ
↦ (𝑥 + 1)), 0) ∪
{〈ω, +∞〉})‘𝑁) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) |
48 | 47 | adantr 274 |
. 2
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω,
+∞〉})‘𝑁) =
(frec((𝑥 ∈ ℤ
↦ (𝑥 + 1)),
0)‘𝑁)) |
49 | 39, 48 | eqtrd 2198 |
1
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) |