ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashennn GIF version

Theorem hashennn 10989
Description: The size of a set equinumerous to an element of ω. (Contributed by Jim Kingdon, 21-Feb-2022.)
Assertion
Ref Expression
hashennn ((𝑁 ∈ ω ∧ 𝑁𝐴) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁

Proof of Theorem hashennn
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ihash 10985 . . . . 5 ♯ = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
21fveq1i 5624 . . . 4 (♯‘𝐴) = (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))‘𝐴)
3 funmpt 5352 . . . . 5 Fun (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})
4 hashennnuni 10988 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 𝑁𝐴) → {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} = 𝑁)
54eqcomd 2235 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝑁 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
6 nnfi 7022 . . . . . . . . . . 11 (𝑁 ∈ ω → 𝑁 ∈ Fin)
76adantr 276 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝑁 ∈ Fin)
8 simpr 110 . . . . . . . . . . 11 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝑁𝐴)
98ensymd 6925 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝐴𝑁)
10 enfii 7024 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝐴𝑁) → 𝐴 ∈ Fin)
117, 9, 10syl2anc 411 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝐴 ∈ Fin)
12 simpl 109 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝑁 ∈ ω)
13 simpr 110 . . . . . . . . . . 11 ((𝑥 = 𝐴𝑧 = 𝑁) → 𝑧 = 𝑁)
14 breq2 4086 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (𝑦𝑥𝑦𝐴))
1514adantr 276 . . . . . . . . . . . . 13 ((𝑥 = 𝐴𝑧 = 𝑁) → (𝑦𝑥𝑦𝐴))
1615rabbidv 2788 . . . . . . . . . . . 12 ((𝑥 = 𝐴𝑧 = 𝑁) → {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥} = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
1716unieqd 3898 . . . . . . . . . . 11 ((𝑥 = 𝐴𝑧 = 𝑁) → {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥} = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
1813, 17eqeq12d 2244 . . . . . . . . . 10 ((𝑥 = 𝐴𝑧 = 𝑁) → (𝑧 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥} ↔ 𝑁 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}))
1918opelopabga 4350 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ω) → (⟨𝐴, 𝑁⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ 𝑧 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}} ↔ 𝑁 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}))
2011, 12, 19syl2anc 411 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑁𝐴) → (⟨𝐴, 𝑁⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ 𝑧 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}} ↔ 𝑁 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}))
215, 20mpbird 167 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑁𝐴) → ⟨𝐴, 𝑁⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ 𝑧 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}})
22 mptv 4180 . . . . . . 7 (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) = {⟨𝑥, 𝑧⟩ ∣ 𝑧 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}}
2321, 22eleqtrrdi 2323 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑁𝐴) → ⟨𝐴, 𝑁⟩ ∈ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
24 opeldmg 4925 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ω) → (⟨𝐴, 𝑁⟩ ∈ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) → 𝐴 ∈ dom (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})))
2511, 12, 24syl2anc 411 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑁𝐴) → (⟨𝐴, 𝑁⟩ ∈ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) → 𝐴 ∈ dom (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})))
2623, 25mpd 13 . . . . 5 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝐴 ∈ dom (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
27 fvco 5697 . . . . 5 ((Fun (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) ∧ 𝐴 ∈ dom (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})) → (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)))
283, 26, 27sylancr 414 . . . 4 ((𝑁 ∈ ω ∧ 𝑁𝐴) → (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)))
292, 28eqtrid 2274 . . 3 ((𝑁 ∈ ω ∧ 𝑁𝐴) → (♯‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)))
3011elexd 2813 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝐴 ∈ V)
314, 12eqeltrd 2306 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑁𝐴) → {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ∈ ω)
3214rabbidv 2788 . . . . . . . 8 (𝑥 = 𝐴 → {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥} = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
3332unieqd 3898 . . . . . . 7 (𝑥 = 𝐴 {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥} = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
34 eqid 2229 . . . . . . 7 (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) = (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})
3533, 34fvmptg 5703 . . . . . 6 ((𝐴 ∈ V ∧ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ∈ ω) → ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴) = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
3630, 31, 35syl2anc 411 . . . . 5 ((𝑁 ∈ ω ∧ 𝑁𝐴) → ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴) = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
3736, 4eqtrd 2262 . . . 4 ((𝑁 ∈ ω ∧ 𝑁𝐴) → ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴) = 𝑁)
3837fveq2d 5627 . . 3 ((𝑁 ∈ ω ∧ 𝑁𝐴) → ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘𝑁))
3929, 38eqtrd 2262 . 2 ((𝑁 ∈ ω ∧ 𝑁𝐴) → (♯‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘𝑁))
40 ordom 4696 . . . . . . 7 Ord ω
41 ordirr 4631 . . . . . . 7 (Ord ω → ¬ ω ∈ ω)
4240, 41ax-mp 5 . . . . . 6 ¬ ω ∈ ω
43 eleq1 2292 . . . . . 6 (ω = 𝑁 → (ω ∈ ω ↔ 𝑁 ∈ ω))
4442, 43mtbii 678 . . . . 5 (ω = 𝑁 → ¬ 𝑁 ∈ ω)
4544necon2ai 2454 . . . 4 (𝑁 ∈ ω → ω ≠ 𝑁)
46 fvunsng 5826 . . . 4 ((𝑁 ∈ ω ∧ ω ≠ 𝑁) → ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘𝑁) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))
4745, 46mpdan 421 . . 3 (𝑁 ∈ ω → ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘𝑁) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))
4847adantr 276 . 2 ((𝑁 ∈ ω ∧ 𝑁𝐴) → ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘𝑁) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))
4939, 48eqtrd 2262 1 ((𝑁 ∈ ω ∧ 𝑁𝐴) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wne 2400  {crab 2512  Vcvv 2799  cun 3195  {csn 3666  cop 3669   cuni 3887   class class class wbr 4082  {copab 4143  cmpt 4144  Ord word 4450  ωcom 4679  dom cdm 4716  ccom 4720  Fun wfun 5308  cfv 5314  (class class class)co 5994  freccfrec 6526  cen 6875  cdom 6876  Fincfn 6877  0cc0 7987  1c1 7988   + caddc 7990  +∞cpnf 8166  cz 9434  chash 10984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-er 6670  df-en 6878  df-dom 6879  df-fin 6880  df-ihash 10985
This theorem is referenced by:  hashcl  10990  hashfz1  10992  hashen  10993  fihashdom  11012  hashun  11014
  Copyright terms: Public domain W3C validator