ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashennn GIF version

Theorem hashennn 10693
Description: The size of a set equinumerous to an element of ω. (Contributed by Jim Kingdon, 21-Feb-2022.)
Assertion
Ref Expression
hashennn ((𝑁 ∈ ω ∧ 𝑁𝐴) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁

Proof of Theorem hashennn
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ihash 10689 . . . . 5 ♯ = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
21fveq1i 5487 . . . 4 (♯‘𝐴) = (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))‘𝐴)
3 funmpt 5226 . . . . 5 Fun (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})
4 hashennnuni 10692 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 𝑁𝐴) → {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} = 𝑁)
54eqcomd 2171 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝑁 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
6 nnfi 6838 . . . . . . . . . . 11 (𝑁 ∈ ω → 𝑁 ∈ Fin)
76adantr 274 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝑁 ∈ Fin)
8 simpr 109 . . . . . . . . . . 11 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝑁𝐴)
98ensymd 6749 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝐴𝑁)
10 enfii 6840 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝐴𝑁) → 𝐴 ∈ Fin)
117, 9, 10syl2anc 409 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝐴 ∈ Fin)
12 simpl 108 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝑁 ∈ ω)
13 simpr 109 . . . . . . . . . . 11 ((𝑥 = 𝐴𝑧 = 𝑁) → 𝑧 = 𝑁)
14 breq2 3986 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (𝑦𝑥𝑦𝐴))
1514adantr 274 . . . . . . . . . . . . 13 ((𝑥 = 𝐴𝑧 = 𝑁) → (𝑦𝑥𝑦𝐴))
1615rabbidv 2715 . . . . . . . . . . . 12 ((𝑥 = 𝐴𝑧 = 𝑁) → {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥} = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
1716unieqd 3800 . . . . . . . . . . 11 ((𝑥 = 𝐴𝑧 = 𝑁) → {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥} = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
1813, 17eqeq12d 2180 . . . . . . . . . 10 ((𝑥 = 𝐴𝑧 = 𝑁) → (𝑧 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥} ↔ 𝑁 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}))
1918opelopabga 4241 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ω) → (⟨𝐴, 𝑁⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ 𝑧 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}} ↔ 𝑁 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}))
2011, 12, 19syl2anc 409 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑁𝐴) → (⟨𝐴, 𝑁⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ 𝑧 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}} ↔ 𝑁 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}))
215, 20mpbird 166 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑁𝐴) → ⟨𝐴, 𝑁⟩ ∈ {⟨𝑥, 𝑧⟩ ∣ 𝑧 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}})
22 mptv 4079 . . . . . . 7 (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) = {⟨𝑥, 𝑧⟩ ∣ 𝑧 = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}}
2321, 22eleqtrrdi 2260 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑁𝐴) → ⟨𝐴, 𝑁⟩ ∈ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
24 opeldmg 4809 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ω) → (⟨𝐴, 𝑁⟩ ∈ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) → 𝐴 ∈ dom (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})))
2511, 12, 24syl2anc 409 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑁𝐴) → (⟨𝐴, 𝑁⟩ ∈ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) → 𝐴 ∈ dom (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})))
2623, 25mpd 13 . . . . 5 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝐴 ∈ dom (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
27 fvco 5556 . . . . 5 ((Fun (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) ∧ 𝐴 ∈ dom (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})) → (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)))
283, 26, 27sylancr 411 . . . 4 ((𝑁 ∈ ω ∧ 𝑁𝐴) → (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)))
292, 28syl5eq 2211 . . 3 ((𝑁 ∈ ω ∧ 𝑁𝐴) → (♯‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)))
3011elexd 2739 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑁𝐴) → 𝐴 ∈ V)
314, 12eqeltrd 2243 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑁𝐴) → {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ∈ ω)
3214rabbidv 2715 . . . . . . . 8 (𝑥 = 𝐴 → {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥} = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
3332unieqd 3800 . . . . . . 7 (𝑥 = 𝐴 {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥} = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
34 eqid 2165 . . . . . . 7 (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) = (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})
3533, 34fvmptg 5562 . . . . . 6 ((𝐴 ∈ V ∧ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ∈ ω) → ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴) = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
3630, 31, 35syl2anc 409 . . . . 5 ((𝑁 ∈ ω ∧ 𝑁𝐴) → ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴) = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
3736, 4eqtrd 2198 . . . 4 ((𝑁 ∈ ω ∧ 𝑁𝐴) → ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴) = 𝑁)
3837fveq2d 5490 . . 3 ((𝑁 ∈ ω ∧ 𝑁𝐴) → ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘𝑁))
3929, 38eqtrd 2198 . 2 ((𝑁 ∈ ω ∧ 𝑁𝐴) → (♯‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘𝑁))
40 ordom 4584 . . . . . . 7 Ord ω
41 ordirr 4519 . . . . . . 7 (Ord ω → ¬ ω ∈ ω)
4240, 41ax-mp 5 . . . . . 6 ¬ ω ∈ ω
43 eleq1 2229 . . . . . 6 (ω = 𝑁 → (ω ∈ ω ↔ 𝑁 ∈ ω))
4442, 43mtbii 664 . . . . 5 (ω = 𝑁 → ¬ 𝑁 ∈ ω)
4544necon2ai 2390 . . . 4 (𝑁 ∈ ω → ω ≠ 𝑁)
46 fvunsng 5679 . . . 4 ((𝑁 ∈ ω ∧ ω ≠ 𝑁) → ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘𝑁) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))
4745, 46mpdan 418 . . 3 (𝑁 ∈ ω → ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘𝑁) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))
4847adantr 274 . 2 ((𝑁 ∈ ω ∧ 𝑁𝐴) → ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘𝑁) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))
4939, 48eqtrd 2198 1 ((𝑁 ∈ ω ∧ 𝑁𝐴) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wne 2336  {crab 2448  Vcvv 2726  cun 3114  {csn 3576  cop 3579   cuni 3789   class class class wbr 3982  {copab 4042  cmpt 4043  Ord word 4340  ωcom 4567  dom cdm 4604  ccom 4608  Fun wfun 5182  cfv 5188  (class class class)co 5842  freccfrec 6358  cen 6704  cdom 6705  Fincfn 6706  0cc0 7753  1c1 7754   + caddc 7756  +∞cpnf 7930  cz 9191  chash 10688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-ihash 10689
This theorem is referenced by:  hashcl  10694  hashfz1  10696  hashen  10697  fihashdom  10716  hashun  10718
  Copyright terms: Public domain W3C validator