| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-ihash 10868 | 
. . . . 5
⊢ ♯ =
((frec((𝑥 ∈ ℤ
↦ (𝑥 + 1)), 0) ∪
{〈ω, +∞〉}) ∘ (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})) | 
| 2 | 1 | fveq1i 5559 | 
. . . 4
⊢
(♯‘𝐴) =
(((frec((𝑥 ∈ ℤ
↦ (𝑥 + 1)), 0) ∪
{〈ω, +∞〉}) ∘ (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}))‘𝐴) | 
| 3 |   | funmpt 5296 | 
. . . . 5
⊢ Fun
(𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}) | 
| 4 |   | hashennnuni 10871 | 
. . . . . . . . 9
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → ∪ {𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝐴} = 𝑁) | 
| 5 | 4 | eqcomd 2202 | 
. . . . . . . 8
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → 𝑁 = ∪ {𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝐴}) | 
| 6 |   | nnfi 6933 | 
. . . . . . . . . . 11
⊢ (𝑁 ∈ ω → 𝑁 ∈ Fin) | 
| 7 | 6 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → 𝑁 ∈ Fin) | 
| 8 |   | simpr 110 | 
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → 𝑁 ≈ 𝐴) | 
| 9 | 8 | ensymd 6842 | 
. . . . . . . . . 10
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → 𝐴 ≈ 𝑁) | 
| 10 |   | enfii 6935 | 
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝐴 ≈ 𝑁) → 𝐴 ∈ Fin) | 
| 11 | 7, 9, 10 | syl2anc 411 | 
. . . . . . . . 9
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → 𝐴 ∈ Fin) | 
| 12 |   | simpl 109 | 
. . . . . . . . 9
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → 𝑁 ∈ ω) | 
| 13 |   | simpr 110 | 
. . . . . . . . . . 11
⊢ ((𝑥 = 𝐴 ∧ 𝑧 = 𝑁) → 𝑧 = 𝑁) | 
| 14 |   | breq2 4037 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐴 → (𝑦 ≼ 𝑥 ↔ 𝑦 ≼ 𝐴)) | 
| 15 | 14 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝐴 ∧ 𝑧 = 𝑁) → (𝑦 ≼ 𝑥 ↔ 𝑦 ≼ 𝐴)) | 
| 16 | 15 | rabbidv 2752 | 
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝐴 ∧ 𝑧 = 𝑁) → {𝑦 ∈ (ω ∪ {ω}) ∣
𝑦 ≼ 𝑥} = {𝑦 ∈ (ω ∪ {ω}) ∣
𝑦 ≼ 𝐴}) | 
| 17 | 16 | unieqd 3850 | 
. . . . . . . . . . 11
⊢ ((𝑥 = 𝐴 ∧ 𝑧 = 𝑁) → ∪ {𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝑥} = ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}) | 
| 18 | 13, 17 | eqeq12d 2211 | 
. . . . . . . . . 10
⊢ ((𝑥 = 𝐴 ∧ 𝑧 = 𝑁) → (𝑧 = ∪ {𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝑥} ↔ 𝑁 = ∪
{𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝐴})) | 
| 19 | 18 | opelopabga 4297 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ω) →
(〈𝐴, 𝑁〉 ∈ {〈𝑥, 𝑧〉 ∣ 𝑧 = ∪ {𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝑥}} ↔ 𝑁 = ∪
{𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝐴})) | 
| 20 | 11, 12, 19 | syl2anc 411 | 
. . . . . . . 8
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → (〈𝐴, 𝑁〉 ∈ {〈𝑥, 𝑧〉 ∣ 𝑧 = ∪ {𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝑥}} ↔ 𝑁 = ∪
{𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝐴})) | 
| 21 | 5, 20 | mpbird 167 | 
. . . . . . 7
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → 〈𝐴, 𝑁〉 ∈ {〈𝑥, 𝑧〉 ∣ 𝑧 = ∪ {𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝑥}}) | 
| 22 |   | mptv 4130 | 
. . . . . . 7
⊢ (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}) = {〈𝑥, 𝑧〉 ∣ 𝑧 = ∪ {𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝑥}} | 
| 23 | 21, 22 | eleqtrrdi 2290 | 
. . . . . 6
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → 〈𝐴, 𝑁〉 ∈ (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})) | 
| 24 |   | opeldmg 4871 | 
. . . . . . 7
⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ω) →
(〈𝐴, 𝑁〉 ∈ (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}) → 𝐴 ∈ dom (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}))) | 
| 25 | 11, 12, 24 | syl2anc 411 | 
. . . . . 6
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → (〈𝐴, 𝑁〉 ∈ (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}) → 𝐴 ∈ dom (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}))) | 
| 26 | 23, 25 | mpd 13 | 
. . . . 5
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → 𝐴 ∈ dom (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})) | 
| 27 |   | fvco 5631 | 
. . . . 5
⊢ ((Fun
(𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}) ∧ 𝐴 ∈ dom (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})) → (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω,
+∞〉}) ∘ (𝑥
∈ V ↦ ∪ {𝑦 ∈ (ω ∪ {ω}) ∣
𝑦 ≼ 𝑥}))‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω,
+∞〉})‘((𝑥
∈ V ↦ ∪ {𝑦 ∈ (ω ∪ {ω}) ∣
𝑦 ≼ 𝑥})‘𝐴))) | 
| 28 | 3, 26, 27 | sylancr 414 | 
. . . 4
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω,
+∞〉}) ∘ (𝑥
∈ V ↦ ∪ {𝑦 ∈ (ω ∪ {ω}) ∣
𝑦 ≼ 𝑥}))‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω,
+∞〉})‘((𝑥
∈ V ↦ ∪ {𝑦 ∈ (ω ∪ {ω}) ∣
𝑦 ≼ 𝑥})‘𝐴))) | 
| 29 | 2, 28 | eqtrid 2241 | 
. . 3
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → (♯‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω,
+∞〉})‘((𝑥
∈ V ↦ ∪ {𝑦 ∈ (ω ∪ {ω}) ∣
𝑦 ≼ 𝑥})‘𝐴))) | 
| 30 | 11 | elexd 2776 | 
. . . . . 6
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → 𝐴 ∈ V) | 
| 31 | 4, 12 | eqeltrd 2273 | 
. . . . . 6
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → ∪ {𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝐴} ∈
ω) | 
| 32 | 14 | rabbidv 2752 | 
. . . . . . . 8
⊢ (𝑥 = 𝐴 → {𝑦 ∈ (ω ∪ {ω}) ∣
𝑦 ≼ 𝑥} = {𝑦 ∈ (ω ∪ {ω}) ∣
𝑦 ≼ 𝐴}) | 
| 33 | 32 | unieqd 3850 | 
. . . . . . 7
⊢ (𝑥 = 𝐴 → ∪ {𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝑥} = ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}) | 
| 34 |   | eqid 2196 | 
. . . . . . 7
⊢ (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}) = (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}) | 
| 35 | 33, 34 | fvmptg 5637 | 
. . . . . 6
⊢ ((𝐴 ∈ V ∧ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} ∈ ω) → ((𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})‘𝐴) = ∪ {𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝐴}) | 
| 36 | 30, 31, 35 | syl2anc 411 | 
. . . . 5
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → ((𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})‘𝐴) = ∪ {𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝐴}) | 
| 37 | 36, 4 | eqtrd 2229 | 
. . . 4
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → ((𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})‘𝐴) = 𝑁) | 
| 38 | 37 | fveq2d 5562 | 
. . 3
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω,
+∞〉})‘((𝑥
∈ V ↦ ∪ {𝑦 ∈ (ω ∪ {ω}) ∣
𝑦 ≼ 𝑥})‘𝐴)) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω,
+∞〉})‘𝑁)) | 
| 39 | 29, 38 | eqtrd 2229 | 
. 2
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → (♯‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω,
+∞〉})‘𝑁)) | 
| 40 |   | ordom 4643 | 
. . . . . . 7
⊢ Ord
ω | 
| 41 |   | ordirr 4578 | 
. . . . . . 7
⊢ (Ord
ω → ¬ ω ∈ ω) | 
| 42 | 40, 41 | ax-mp 5 | 
. . . . . 6
⊢  ¬
ω ∈ ω | 
| 43 |   | eleq1 2259 | 
. . . . . 6
⊢ (ω
= 𝑁 → (ω ∈
ω ↔ 𝑁 ∈
ω)) | 
| 44 | 42, 43 | mtbii 675 | 
. . . . 5
⊢ (ω
= 𝑁 → ¬ 𝑁 ∈
ω) | 
| 45 | 44 | necon2ai 2421 | 
. . . 4
⊢ (𝑁 ∈ ω → ω
≠ 𝑁) | 
| 46 |   | fvunsng 5756 | 
. . . 4
⊢ ((𝑁 ∈ ω ∧ ω
≠ 𝑁) →
((frec((𝑥 ∈ ℤ
↦ (𝑥 + 1)), 0) ∪
{〈ω, +∞〉})‘𝑁) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) | 
| 47 | 45, 46 | mpdan 421 | 
. . 3
⊢ (𝑁 ∈ ω →
((frec((𝑥 ∈ ℤ
↦ (𝑥 + 1)), 0) ∪
{〈ω, +∞〉})‘𝑁) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) | 
| 48 | 47 | adantr 276 | 
. 2
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω,
+∞〉})‘𝑁) =
(frec((𝑥 ∈ ℤ
↦ (𝑥 + 1)),
0)‘𝑁)) | 
| 49 | 39, 48 | eqtrd 2229 | 
1
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) |