ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashinfuni GIF version

Theorem hashinfuni 10869
Description: The ordinal size of an infinite set is ω. (Contributed by Jim Kingdon, 20-Feb-2022.)
Assertion
Ref Expression
hashinfuni (ω ≼ 𝐴 {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} = ω)
Distinct variable group:   𝑦,𝐴

Proof of Theorem hashinfuni
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 omex 4629 . . . . . 6 ω ∈ V
21snid 3653 . . . . 5 ω ∈ {ω}
3 elun2 3331 . . . . 5 (ω ∈ {ω} → ω ∈ (ω ∪ {ω}))
4 breq1 4036 . . . . . 6 (𝑦 = ω → (𝑦𝐴 ↔ ω ≼ 𝐴))
54elrab3 2921 . . . . 5 (ω ∈ (ω ∪ {ω}) → (ω ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ↔ ω ≼ 𝐴))
62, 3, 5mp2b 8 . . . 4 (ω ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ↔ ω ≼ 𝐴)
76biimpri 133 . . 3 (ω ≼ 𝐴 → ω ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
8 elrabi 2917 . . . . . . 7 (𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} → 𝑧 ∈ (ω ∪ {ω}))
9 elun 3304 . . . . . . 7 (𝑧 ∈ (ω ∪ {ω}) ↔ (𝑧 ∈ ω ∨ 𝑧 ∈ {ω}))
108, 9sylib 122 . . . . . 6 (𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} → (𝑧 ∈ ω ∨ 𝑧 ∈ {ω}))
11 ordom 4643 . . . . . . . 8 Ord ω
12 ordelss 4414 . . . . . . . 8 ((Ord ω ∧ 𝑧 ∈ ω) → 𝑧 ⊆ ω)
1311, 12mpan 424 . . . . . . 7 (𝑧 ∈ ω → 𝑧 ⊆ ω)
14 elsni 3640 . . . . . . . 8 (𝑧 ∈ {ω} → 𝑧 = ω)
15 eqimss 3237 . . . . . . . 8 (𝑧 = ω → 𝑧 ⊆ ω)
1614, 15syl 14 . . . . . . 7 (𝑧 ∈ {ω} → 𝑧 ⊆ ω)
1713, 16jaoi 717 . . . . . 6 ((𝑧 ∈ ω ∨ 𝑧 ∈ {ω}) → 𝑧 ⊆ ω)
1810, 17syl 14 . . . . 5 (𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} → 𝑧 ⊆ ω)
1918adantl 277 . . . 4 ((ω ≼ 𝐴𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) → 𝑧 ⊆ ω)
2019ralrimiva 2570 . . 3 (ω ≼ 𝐴 → ∀𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}𝑧 ⊆ ω)
21 ssunieq 3872 . . 3 ((ω ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ∧ ∀𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}𝑧 ⊆ ω) → ω = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
227, 20, 21syl2anc 411 . 2 (ω ≼ 𝐴 → ω = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
2322eqcomd 2202 1 (ω ≼ 𝐴 {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} = ω)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wo 709   = wceq 1364  wcel 2167  wral 2475  {crab 2479  cun 3155  wss 3157  {csn 3622   cuni 3839   class class class wbr 4033  Ord word 4397  ωcom 4626  cdom 6798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-tr 4132  df-iord 4401  df-suc 4406  df-iom 4627
This theorem is referenced by:  hashinfom  10870
  Copyright terms: Public domain W3C validator