![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hashinfuni | GIF version |
Description: The ordinal size of an infinite set is ω. (Contributed by Jim Kingdon, 20-Feb-2022.) |
Ref | Expression |
---|---|
hashinfuni | ⊢ (ω ≼ 𝐴 → ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} = ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 4436 | . . . . . 6 ⊢ ω ∈ V | |
2 | 1 | snid 3495 | . . . . 5 ⊢ ω ∈ {ω} |
3 | elun2 3183 | . . . . 5 ⊢ (ω ∈ {ω} → ω ∈ (ω ∪ {ω})) | |
4 | breq1 3870 | . . . . . 6 ⊢ (𝑦 = ω → (𝑦 ≼ 𝐴 ↔ ω ≼ 𝐴)) | |
5 | 4 | elrab3 2786 | . . . . 5 ⊢ (ω ∈ (ω ∪ {ω}) → (ω ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} ↔ ω ≼ 𝐴)) |
6 | 2, 3, 5 | mp2b 8 | . . . 4 ⊢ (ω ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} ↔ ω ≼ 𝐴) |
7 | 6 | biimpri 132 | . . 3 ⊢ (ω ≼ 𝐴 → ω ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}) |
8 | elrabi 2782 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} → 𝑧 ∈ (ω ∪ {ω})) | |
9 | elun 3156 | . . . . . . 7 ⊢ (𝑧 ∈ (ω ∪ {ω}) ↔ (𝑧 ∈ ω ∨ 𝑧 ∈ {ω})) | |
10 | 8, 9 | sylib 121 | . . . . . 6 ⊢ (𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} → (𝑧 ∈ ω ∨ 𝑧 ∈ {ω})) |
11 | ordom 4449 | . . . . . . . 8 ⊢ Ord ω | |
12 | ordelss 4230 | . . . . . . . 8 ⊢ ((Ord ω ∧ 𝑧 ∈ ω) → 𝑧 ⊆ ω) | |
13 | 11, 12 | mpan 416 | . . . . . . 7 ⊢ (𝑧 ∈ ω → 𝑧 ⊆ ω) |
14 | elsni 3484 | . . . . . . . 8 ⊢ (𝑧 ∈ {ω} → 𝑧 = ω) | |
15 | eqimss 3093 | . . . . . . . 8 ⊢ (𝑧 = ω → 𝑧 ⊆ ω) | |
16 | 14, 15 | syl 14 | . . . . . . 7 ⊢ (𝑧 ∈ {ω} → 𝑧 ⊆ ω) |
17 | 13, 16 | jaoi 674 | . . . . . 6 ⊢ ((𝑧 ∈ ω ∨ 𝑧 ∈ {ω}) → 𝑧 ⊆ ω) |
18 | 10, 17 | syl 14 | . . . . 5 ⊢ (𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} → 𝑧 ⊆ ω) |
19 | 18 | adantl 272 | . . . 4 ⊢ ((ω ≼ 𝐴 ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}) → 𝑧 ⊆ ω) |
20 | 19 | ralrimiva 2458 | . . 3 ⊢ (ω ≼ 𝐴 → ∀𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}𝑧 ⊆ ω) |
21 | ssunieq 3708 | . . 3 ⊢ ((ω ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} ∧ ∀𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}𝑧 ⊆ ω) → ω = ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}) | |
22 | 7, 20, 21 | syl2anc 404 | . 2 ⊢ (ω ≼ 𝐴 → ω = ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}) |
23 | 22 | eqcomd 2100 | 1 ⊢ (ω ≼ 𝐴 → ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} = ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∨ wo 667 = wceq 1296 ∈ wcel 1445 ∀wral 2370 {crab 2374 ∪ cun 3011 ⊆ wss 3013 {csn 3466 ∪ cuni 3675 class class class wbr 3867 Ord word 4213 ωcom 4433 ≼ cdom 6536 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-nul 3986 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-iinf 4431 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-rab 2379 df-v 2635 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-br 3868 df-tr 3959 df-iord 4217 df-suc 4222 df-iom 4434 |
This theorem is referenced by: hashinfom 10301 |
Copyright terms: Public domain | W3C validator |