![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hashinfuni | GIF version |
Description: The ordinal size of an infinite set is ω. (Contributed by Jim Kingdon, 20-Feb-2022.) |
Ref | Expression |
---|---|
hashinfuni | ⊢ (ω ≼ 𝐴 → ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} = ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 4626 | . . . . . 6 ⊢ ω ∈ V | |
2 | 1 | snid 3650 | . . . . 5 ⊢ ω ∈ {ω} |
3 | elun2 3328 | . . . . 5 ⊢ (ω ∈ {ω} → ω ∈ (ω ∪ {ω})) | |
4 | breq1 4033 | . . . . . 6 ⊢ (𝑦 = ω → (𝑦 ≼ 𝐴 ↔ ω ≼ 𝐴)) | |
5 | 4 | elrab3 2918 | . . . . 5 ⊢ (ω ∈ (ω ∪ {ω}) → (ω ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} ↔ ω ≼ 𝐴)) |
6 | 2, 3, 5 | mp2b 8 | . . . 4 ⊢ (ω ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} ↔ ω ≼ 𝐴) |
7 | 6 | biimpri 133 | . . 3 ⊢ (ω ≼ 𝐴 → ω ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}) |
8 | elrabi 2914 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} → 𝑧 ∈ (ω ∪ {ω})) | |
9 | elun 3301 | . . . . . . 7 ⊢ (𝑧 ∈ (ω ∪ {ω}) ↔ (𝑧 ∈ ω ∨ 𝑧 ∈ {ω})) | |
10 | 8, 9 | sylib 122 | . . . . . 6 ⊢ (𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} → (𝑧 ∈ ω ∨ 𝑧 ∈ {ω})) |
11 | ordom 4640 | . . . . . . . 8 ⊢ Ord ω | |
12 | ordelss 4411 | . . . . . . . 8 ⊢ ((Ord ω ∧ 𝑧 ∈ ω) → 𝑧 ⊆ ω) | |
13 | 11, 12 | mpan 424 | . . . . . . 7 ⊢ (𝑧 ∈ ω → 𝑧 ⊆ ω) |
14 | elsni 3637 | . . . . . . . 8 ⊢ (𝑧 ∈ {ω} → 𝑧 = ω) | |
15 | eqimss 3234 | . . . . . . . 8 ⊢ (𝑧 = ω → 𝑧 ⊆ ω) | |
16 | 14, 15 | syl 14 | . . . . . . 7 ⊢ (𝑧 ∈ {ω} → 𝑧 ⊆ ω) |
17 | 13, 16 | jaoi 717 | . . . . . 6 ⊢ ((𝑧 ∈ ω ∨ 𝑧 ∈ {ω}) → 𝑧 ⊆ ω) |
18 | 10, 17 | syl 14 | . . . . 5 ⊢ (𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} → 𝑧 ⊆ ω) |
19 | 18 | adantl 277 | . . . 4 ⊢ ((ω ≼ 𝐴 ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}) → 𝑧 ⊆ ω) |
20 | 19 | ralrimiva 2567 | . . 3 ⊢ (ω ≼ 𝐴 → ∀𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}𝑧 ⊆ ω) |
21 | ssunieq 3869 | . . 3 ⊢ ((ω ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} ∧ ∀𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}𝑧 ⊆ ω) → ω = ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}) | |
22 | 7, 20, 21 | syl2anc 411 | . 2 ⊢ (ω ≼ 𝐴 → ω = ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}) |
23 | 22 | eqcomd 2199 | 1 ⊢ (ω ≼ 𝐴 → ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} = ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2164 ∀wral 2472 {crab 2476 ∪ cun 3152 ⊆ wss 3154 {csn 3619 ∪ cuni 3836 class class class wbr 4030 Ord word 4394 ωcom 4623 ≼ cdom 6795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-tr 4129 df-iord 4398 df-suc 4403 df-iom 4624 |
This theorem is referenced by: hashinfom 10852 |
Copyright terms: Public domain | W3C validator |