| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashinfuni | GIF version | ||
| Description: The ordinal size of an infinite set is ω. (Contributed by Jim Kingdon, 20-Feb-2022.) |
| Ref | Expression |
|---|---|
| hashinfuni | ⊢ (ω ≼ 𝐴 → ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} = ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 4646 | . . . . . 6 ⊢ ω ∈ V | |
| 2 | 1 | snid 3666 | . . . . 5 ⊢ ω ∈ {ω} |
| 3 | elun2 3343 | . . . . 5 ⊢ (ω ∈ {ω} → ω ∈ (ω ∪ {ω})) | |
| 4 | breq1 4051 | . . . . . 6 ⊢ (𝑦 = ω → (𝑦 ≼ 𝐴 ↔ ω ≼ 𝐴)) | |
| 5 | 4 | elrab3 2932 | . . . . 5 ⊢ (ω ∈ (ω ∪ {ω}) → (ω ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} ↔ ω ≼ 𝐴)) |
| 6 | 2, 3, 5 | mp2b 8 | . . . 4 ⊢ (ω ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} ↔ ω ≼ 𝐴) |
| 7 | 6 | biimpri 133 | . . 3 ⊢ (ω ≼ 𝐴 → ω ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}) |
| 8 | elrabi 2928 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} → 𝑧 ∈ (ω ∪ {ω})) | |
| 9 | elun 3316 | . . . . . . 7 ⊢ (𝑧 ∈ (ω ∪ {ω}) ↔ (𝑧 ∈ ω ∨ 𝑧 ∈ {ω})) | |
| 10 | 8, 9 | sylib 122 | . . . . . 6 ⊢ (𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} → (𝑧 ∈ ω ∨ 𝑧 ∈ {ω})) |
| 11 | ordom 4660 | . . . . . . . 8 ⊢ Ord ω | |
| 12 | ordelss 4431 | . . . . . . . 8 ⊢ ((Ord ω ∧ 𝑧 ∈ ω) → 𝑧 ⊆ ω) | |
| 13 | 11, 12 | mpan 424 | . . . . . . 7 ⊢ (𝑧 ∈ ω → 𝑧 ⊆ ω) |
| 14 | elsni 3653 | . . . . . . . 8 ⊢ (𝑧 ∈ {ω} → 𝑧 = ω) | |
| 15 | eqimss 3249 | . . . . . . . 8 ⊢ (𝑧 = ω → 𝑧 ⊆ ω) | |
| 16 | 14, 15 | syl 14 | . . . . . . 7 ⊢ (𝑧 ∈ {ω} → 𝑧 ⊆ ω) |
| 17 | 13, 16 | jaoi 718 | . . . . . 6 ⊢ ((𝑧 ∈ ω ∨ 𝑧 ∈ {ω}) → 𝑧 ⊆ ω) |
| 18 | 10, 17 | syl 14 | . . . . 5 ⊢ (𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} → 𝑧 ⊆ ω) |
| 19 | 18 | adantl 277 | . . . 4 ⊢ ((ω ≼ 𝐴 ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}) → 𝑧 ⊆ ω) |
| 20 | 19 | ralrimiva 2580 | . . 3 ⊢ (ω ≼ 𝐴 → ∀𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}𝑧 ⊆ ω) |
| 21 | ssunieq 3886 | . . 3 ⊢ ((ω ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} ∧ ∀𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}𝑧 ⊆ ω) → ω = ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}) | |
| 22 | 7, 20, 21 | syl2anc 411 | . 2 ⊢ (ω ≼ 𝐴 → ω = ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}) |
| 23 | 22 | eqcomd 2212 | 1 ⊢ (ω ≼ 𝐴 → ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} = ω) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 710 = wceq 1373 ∈ wcel 2177 ∀wral 2485 {crab 2489 ∪ cun 3166 ⊆ wss 3168 {csn 3635 ∪ cuni 3853 class class class wbr 4048 Ord word 4414 ωcom 4643 ≼ cdom 6836 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-tr 4148 df-iord 4418 df-suc 4423 df-iom 4644 |
| This theorem is referenced by: hashinfom 10936 |
| Copyright terms: Public domain | W3C validator |