| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > hashinfuni | GIF version | ||
| Description: The ordinal size of an infinite set is ω. (Contributed by Jim Kingdon, 20-Feb-2022.) | 
| Ref | Expression | 
|---|---|
| hashinfuni | ⊢ (ω ≼ 𝐴 → ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} = ω) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | omex 4629 | . . . . . 6 ⊢ ω ∈ V | |
| 2 | 1 | snid 3653 | . . . . 5 ⊢ ω ∈ {ω} | 
| 3 | elun2 3331 | . . . . 5 ⊢ (ω ∈ {ω} → ω ∈ (ω ∪ {ω})) | |
| 4 | breq1 4036 | . . . . . 6 ⊢ (𝑦 = ω → (𝑦 ≼ 𝐴 ↔ ω ≼ 𝐴)) | |
| 5 | 4 | elrab3 2921 | . . . . 5 ⊢ (ω ∈ (ω ∪ {ω}) → (ω ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} ↔ ω ≼ 𝐴)) | 
| 6 | 2, 3, 5 | mp2b 8 | . . . 4 ⊢ (ω ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} ↔ ω ≼ 𝐴) | 
| 7 | 6 | biimpri 133 | . . 3 ⊢ (ω ≼ 𝐴 → ω ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}) | 
| 8 | elrabi 2917 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} → 𝑧 ∈ (ω ∪ {ω})) | |
| 9 | elun 3304 | . . . . . . 7 ⊢ (𝑧 ∈ (ω ∪ {ω}) ↔ (𝑧 ∈ ω ∨ 𝑧 ∈ {ω})) | |
| 10 | 8, 9 | sylib 122 | . . . . . 6 ⊢ (𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} → (𝑧 ∈ ω ∨ 𝑧 ∈ {ω})) | 
| 11 | ordom 4643 | . . . . . . . 8 ⊢ Ord ω | |
| 12 | ordelss 4414 | . . . . . . . 8 ⊢ ((Ord ω ∧ 𝑧 ∈ ω) → 𝑧 ⊆ ω) | |
| 13 | 11, 12 | mpan 424 | . . . . . . 7 ⊢ (𝑧 ∈ ω → 𝑧 ⊆ ω) | 
| 14 | elsni 3640 | . . . . . . . 8 ⊢ (𝑧 ∈ {ω} → 𝑧 = ω) | |
| 15 | eqimss 3237 | . . . . . . . 8 ⊢ (𝑧 = ω → 𝑧 ⊆ ω) | |
| 16 | 14, 15 | syl 14 | . . . . . . 7 ⊢ (𝑧 ∈ {ω} → 𝑧 ⊆ ω) | 
| 17 | 13, 16 | jaoi 717 | . . . . . 6 ⊢ ((𝑧 ∈ ω ∨ 𝑧 ∈ {ω}) → 𝑧 ⊆ ω) | 
| 18 | 10, 17 | syl 14 | . . . . 5 ⊢ (𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} → 𝑧 ⊆ ω) | 
| 19 | 18 | adantl 277 | . . . 4 ⊢ ((ω ≼ 𝐴 ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}) → 𝑧 ⊆ ω) | 
| 20 | 19 | ralrimiva 2570 | . . 3 ⊢ (ω ≼ 𝐴 → ∀𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}𝑧 ⊆ ω) | 
| 21 | ssunieq 3872 | . . 3 ⊢ ((ω ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} ∧ ∀𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}𝑧 ⊆ ω) → ω = ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}) | |
| 22 | 7, 20, 21 | syl2anc 411 | . 2 ⊢ (ω ≼ 𝐴 → ω = ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}) | 
| 23 | 22 | eqcomd 2202 | 1 ⊢ (ω ≼ 𝐴 → ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} = ω) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2167 ∀wral 2475 {crab 2479 ∪ cun 3155 ⊆ wss 3157 {csn 3622 ∪ cuni 3839 class class class wbr 4033 Ord word 4397 ωcom 4626 ≼ cdom 6798 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-tr 4132 df-iord 4401 df-suc 4406 df-iom 4627 | 
| This theorem is referenced by: hashinfom 10870 | 
| Copyright terms: Public domain | W3C validator |