![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hashinfuni | GIF version |
Description: The ordinal size of an infinite set is ω. (Contributed by Jim Kingdon, 20-Feb-2022.) |
Ref | Expression |
---|---|
hashinfuni | ⊢ (ω ≼ 𝐴 → ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} = ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 4594 | . . . . . 6 ⊢ ω ∈ V | |
2 | 1 | snid 3625 | . . . . 5 ⊢ ω ∈ {ω} |
3 | elun2 3305 | . . . . 5 ⊢ (ω ∈ {ω} → ω ∈ (ω ∪ {ω})) | |
4 | breq1 4008 | . . . . . 6 ⊢ (𝑦 = ω → (𝑦 ≼ 𝐴 ↔ ω ≼ 𝐴)) | |
5 | 4 | elrab3 2896 | . . . . 5 ⊢ (ω ∈ (ω ∪ {ω}) → (ω ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} ↔ ω ≼ 𝐴)) |
6 | 2, 3, 5 | mp2b 8 | . . . 4 ⊢ (ω ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} ↔ ω ≼ 𝐴) |
7 | 6 | biimpri 133 | . . 3 ⊢ (ω ≼ 𝐴 → ω ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}) |
8 | elrabi 2892 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} → 𝑧 ∈ (ω ∪ {ω})) | |
9 | elun 3278 | . . . . . . 7 ⊢ (𝑧 ∈ (ω ∪ {ω}) ↔ (𝑧 ∈ ω ∨ 𝑧 ∈ {ω})) | |
10 | 8, 9 | sylib 122 | . . . . . 6 ⊢ (𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} → (𝑧 ∈ ω ∨ 𝑧 ∈ {ω})) |
11 | ordom 4608 | . . . . . . . 8 ⊢ Ord ω | |
12 | ordelss 4381 | . . . . . . . 8 ⊢ ((Ord ω ∧ 𝑧 ∈ ω) → 𝑧 ⊆ ω) | |
13 | 11, 12 | mpan 424 | . . . . . . 7 ⊢ (𝑧 ∈ ω → 𝑧 ⊆ ω) |
14 | elsni 3612 | . . . . . . . 8 ⊢ (𝑧 ∈ {ω} → 𝑧 = ω) | |
15 | eqimss 3211 | . . . . . . . 8 ⊢ (𝑧 = ω → 𝑧 ⊆ ω) | |
16 | 14, 15 | syl 14 | . . . . . . 7 ⊢ (𝑧 ∈ {ω} → 𝑧 ⊆ ω) |
17 | 13, 16 | jaoi 716 | . . . . . 6 ⊢ ((𝑧 ∈ ω ∨ 𝑧 ∈ {ω}) → 𝑧 ⊆ ω) |
18 | 10, 17 | syl 14 | . . . . 5 ⊢ (𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} → 𝑧 ⊆ ω) |
19 | 18 | adantl 277 | . . . 4 ⊢ ((ω ≼ 𝐴 ∧ 𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}) → 𝑧 ⊆ ω) |
20 | 19 | ralrimiva 2550 | . . 3 ⊢ (ω ≼ 𝐴 → ∀𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}𝑧 ⊆ ω) |
21 | ssunieq 3844 | . . 3 ⊢ ((ω ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} ∧ ∀𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}𝑧 ⊆ ω) → ω = ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}) | |
22 | 7, 20, 21 | syl2anc 411 | . 2 ⊢ (ω ≼ 𝐴 → ω = ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}) |
23 | 22 | eqcomd 2183 | 1 ⊢ (ω ≼ 𝐴 → ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} = ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∨ wo 708 = wceq 1353 ∈ wcel 2148 ∀wral 2455 {crab 2459 ∪ cun 3129 ⊆ wss 3131 {csn 3594 ∪ cuni 3811 class class class wbr 4005 Ord word 4364 ωcom 4591 ≼ cdom 6741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-tr 4104 df-iord 4368 df-suc 4373 df-iom 4592 |
This theorem is referenced by: hashinfom 10760 |
Copyright terms: Public domain | W3C validator |