ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashinfuni GIF version

Theorem hashinfuni 10711
Description: The ordinal size of an infinite set is ω. (Contributed by Jim Kingdon, 20-Feb-2022.)
Assertion
Ref Expression
hashinfuni (ω ≼ 𝐴 {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} = ω)
Distinct variable group:   𝑦,𝐴

Proof of Theorem hashinfuni
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 omex 4577 . . . . . 6 ω ∈ V
21snid 3614 . . . . 5 ω ∈ {ω}
3 elun2 3295 . . . . 5 (ω ∈ {ω} → ω ∈ (ω ∪ {ω}))
4 breq1 3992 . . . . . 6 (𝑦 = ω → (𝑦𝐴 ↔ ω ≼ 𝐴))
54elrab3 2887 . . . . 5 (ω ∈ (ω ∪ {ω}) → (ω ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ↔ ω ≼ 𝐴))
62, 3, 5mp2b 8 . . . 4 (ω ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ↔ ω ≼ 𝐴)
76biimpri 132 . . 3 (ω ≼ 𝐴 → ω ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
8 elrabi 2883 . . . . . . 7 (𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} → 𝑧 ∈ (ω ∪ {ω}))
9 elun 3268 . . . . . . 7 (𝑧 ∈ (ω ∪ {ω}) ↔ (𝑧 ∈ ω ∨ 𝑧 ∈ {ω}))
108, 9sylib 121 . . . . . 6 (𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} → (𝑧 ∈ ω ∨ 𝑧 ∈ {ω}))
11 ordom 4591 . . . . . . . 8 Ord ω
12 ordelss 4364 . . . . . . . 8 ((Ord ω ∧ 𝑧 ∈ ω) → 𝑧 ⊆ ω)
1311, 12mpan 422 . . . . . . 7 (𝑧 ∈ ω → 𝑧 ⊆ ω)
14 elsni 3601 . . . . . . . 8 (𝑧 ∈ {ω} → 𝑧 = ω)
15 eqimss 3201 . . . . . . . 8 (𝑧 = ω → 𝑧 ⊆ ω)
1614, 15syl 14 . . . . . . 7 (𝑧 ∈ {ω} → 𝑧 ⊆ ω)
1713, 16jaoi 711 . . . . . 6 ((𝑧 ∈ ω ∨ 𝑧 ∈ {ω}) → 𝑧 ⊆ ω)
1810, 17syl 14 . . . . 5 (𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} → 𝑧 ⊆ ω)
1918adantl 275 . . . 4 ((ω ≼ 𝐴𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}) → 𝑧 ⊆ ω)
2019ralrimiva 2543 . . 3 (ω ≼ 𝐴 → ∀𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}𝑧 ⊆ ω)
21 ssunieq 3829 . . 3 ((ω ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ∧ ∀𝑧 ∈ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴}𝑧 ⊆ ω) → ω = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
227, 20, 21syl2anc 409 . 2 (ω ≼ 𝐴 → ω = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
2322eqcomd 2176 1 (ω ≼ 𝐴 {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} = ω)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wo 703   = wceq 1348  wcel 2141  wral 2448  {crab 2452  cun 3119  wss 3121  {csn 3583   cuni 3796   class class class wbr 3989  Ord word 4347  ωcom 4574  cdom 6717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-tr 4088  df-iord 4351  df-suc 4356  df-iom 4575
This theorem is referenced by:  hashinfom  10712
  Copyright terms: Public domain W3C validator