ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashinfom GIF version

Theorem hashinfom 10691
Description: The value of the function on an infinite set. (Contributed by Jim Kingdon, 20-Feb-2022.)
Assertion
Ref Expression
hashinfom (ω ≼ 𝐴 → (♯‘𝐴) = +∞)

Proof of Theorem hashinfom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ihash 10689 . . . . 5 ♯ = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
21fveq1i 5487 . . . 4 (♯‘𝐴) = (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))‘𝐴)
3 funmpt 5226 . . . . 5 Fun (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})
4 funrel 5205 . . . . . . 7 (Fun (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) → Rel (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
53, 4ax-mp 5 . . . . . 6 Rel (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})
6 peano1 4571 . . . . . . 7 ∅ ∈ ω
7 reldom 6711 . . . . . . . . . 10 Rel ≼
87brrelex2i 4648 . . . . . . . . 9 (ω ≼ 𝐴𝐴 ∈ V)
9 hashinfuni 10690 . . . . . . . . . 10 (ω ≼ 𝐴 {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} = ω)
10 omex 4570 . . . . . . . . . 10 ω ∈ V
119, 10eqeltrdi 2257 . . . . . . . . 9 (ω ≼ 𝐴 {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ∈ V)
12 breq2 3986 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (𝑦𝑥𝑦𝐴))
1312rabbidv 2715 . . . . . . . . . . 11 (𝑥 = 𝐴 → {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥} = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
1413unieqd 3800 . . . . . . . . . 10 (𝑥 = 𝐴 {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥} = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
15 eqid 2165 . . . . . . . . . 10 (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) = (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})
1614, 15fvmptg 5562 . . . . . . . . 9 ((𝐴 ∈ V ∧ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ∈ V) → ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴) = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
178, 11, 16syl2anc 409 . . . . . . . 8 (ω ≼ 𝐴 → ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴) = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
1817, 9eqtrd 2198 . . . . . . 7 (ω ≼ 𝐴 → ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴) = ω)
196, 18eleqtrrid 2256 . . . . . 6 (ω ≼ 𝐴 → ∅ ∈ ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴))
20 relelfvdm 5518 . . . . . 6 ((Rel (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) ∧ ∅ ∈ ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)) → 𝐴 ∈ dom (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
215, 19, 20sylancr 411 . . . . 5 (ω ≼ 𝐴𝐴 ∈ dom (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
22 fvco 5556 . . . . 5 ((Fun (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) ∧ 𝐴 ∈ dom (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})) → (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)))
233, 21, 22sylancr 411 . . . 4 (ω ≼ 𝐴 → (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)))
242, 23syl5eq 2211 . . 3 (ω ≼ 𝐴 → (♯‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)))
2518fveq2d 5490 . . 3 (ω ≼ 𝐴 → ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘ω))
2624, 25eqtrd 2198 . 2 (ω ≼ 𝐴 → (♯‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘ω))
27 pnfxr 7951 . . 3 +∞ ∈ ℝ*
28 ordom 4584 . . . . 5 Ord ω
29 ordirr 4519 . . . . 5 (Ord ω → ¬ ω ∈ ω)
3028, 29ax-mp 5 . . . 4 ¬ ω ∈ ω
31 zex 9200 . . . . . . . . . 10 ℤ ∈ V
3231mptex 5711 . . . . . . . . 9 (𝑥 ∈ ℤ ↦ (𝑥 + 1)) ∈ V
33 vex 2729 . . . . . . . . 9 𝑧 ∈ V
3432, 33fvex 5506 . . . . . . . 8 ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
3534ax-gen 1437 . . . . . . 7 𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
36 0z 9202 . . . . . . 7 0 ∈ ℤ
37 frecfnom 6369 . . . . . . 7 ((∀𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V ∧ 0 ∈ ℤ) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) Fn ω)
3835, 36, 37mp2an 423 . . . . . 6 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) Fn ω
39 fndm 5287 . . . . . 6 (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) Fn ω → dom frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = ω)
4038, 39ax-mp 5 . . . . 5 dom frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = ω
4140eleq2i 2233 . . . 4 (ω ∈ dom frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ↔ ω ∈ ω)
4230, 41mtbir 661 . . 3 ¬ ω ∈ dom frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
43 fsnunfv 5686 . . 3 ((ω ∈ V ∧ +∞ ∈ ℝ* ∧ ¬ ω ∈ dom frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) → ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘ω) = +∞)
4410, 27, 42, 43mp3an 1327 . 2 ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘ω) = +∞
4526, 44eqtrdi 2215 1 (ω ≼ 𝐴 → (♯‘𝐴) = +∞)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1341   = wceq 1343  wcel 2136  {crab 2448  Vcvv 2726  cun 3114  c0 3409  {csn 3576  cop 3579   cuni 3789   class class class wbr 3982  cmpt 4043  Ord word 4340  ωcom 4567  dom cdm 4604  ccom 4608  Rel wrel 4609  Fun wfun 5182   Fn wfn 5183  cfv 5188  (class class class)co 5842  freccfrec 6358  cdom 6705  0cc0 7753  1c1 7754   + caddc 7756  +∞cpnf 7930  *cxr 7932  cz 9191  chash 10688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850  ax-rnegex 7862
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-recs 6273  df-frec 6359  df-dom 6708  df-pnf 7935  df-xr 7937  df-neg 8072  df-z 9192  df-ihash 10689
This theorem is referenced by:  filtinf  10705
  Copyright terms: Public domain W3C validator