ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashinfom GIF version

Theorem hashinfom 10870
Description: The value of the function on an infinite set. (Contributed by Jim Kingdon, 20-Feb-2022.)
Assertion
Ref Expression
hashinfom (ω ≼ 𝐴 → (♯‘𝐴) = +∞)

Proof of Theorem hashinfom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ihash 10868 . . . . 5 ♯ = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
21fveq1i 5559 . . . 4 (♯‘𝐴) = (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))‘𝐴)
3 funmpt 5296 . . . . 5 Fun (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})
4 funrel 5275 . . . . . . 7 (Fun (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) → Rel (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
53, 4ax-mp 5 . . . . . 6 Rel (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})
6 peano1 4630 . . . . . . 7 ∅ ∈ ω
7 reldom 6804 . . . . . . . . . 10 Rel ≼
87brrelex2i 4707 . . . . . . . . 9 (ω ≼ 𝐴𝐴 ∈ V)
9 hashinfuni 10869 . . . . . . . . . 10 (ω ≼ 𝐴 {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} = ω)
10 omex 4629 . . . . . . . . . 10 ω ∈ V
119, 10eqeltrdi 2287 . . . . . . . . 9 (ω ≼ 𝐴 {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ∈ V)
12 breq2 4037 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (𝑦𝑥𝑦𝐴))
1312rabbidv 2752 . . . . . . . . . . 11 (𝑥 = 𝐴 → {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥} = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
1413unieqd 3850 . . . . . . . . . 10 (𝑥 = 𝐴 {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥} = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
15 eqid 2196 . . . . . . . . . 10 (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) = (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})
1614, 15fvmptg 5637 . . . . . . . . 9 ((𝐴 ∈ V ∧ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ∈ V) → ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴) = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
178, 11, 16syl2anc 411 . . . . . . . 8 (ω ≼ 𝐴 → ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴) = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
1817, 9eqtrd 2229 . . . . . . 7 (ω ≼ 𝐴 → ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴) = ω)
196, 18eleqtrrid 2286 . . . . . 6 (ω ≼ 𝐴 → ∅ ∈ ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴))
20 relelfvdm 5590 . . . . . 6 ((Rel (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) ∧ ∅ ∈ ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)) → 𝐴 ∈ dom (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
215, 19, 20sylancr 414 . . . . 5 (ω ≼ 𝐴𝐴 ∈ dom (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
22 fvco 5631 . . . . 5 ((Fun (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) ∧ 𝐴 ∈ dom (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})) → (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)))
233, 21, 22sylancr 414 . . . 4 (ω ≼ 𝐴 → (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)))
242, 23eqtrid 2241 . . 3 (ω ≼ 𝐴 → (♯‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)))
2518fveq2d 5562 . . 3 (ω ≼ 𝐴 → ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘ω))
2624, 25eqtrd 2229 . 2 (ω ≼ 𝐴 → (♯‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘ω))
27 pnfxr 8079 . . 3 +∞ ∈ ℝ*
28 ordom 4643 . . . . 5 Ord ω
29 ordirr 4578 . . . . 5 (Ord ω → ¬ ω ∈ ω)
3028, 29ax-mp 5 . . . 4 ¬ ω ∈ ω
31 zex 9335 . . . . . . . . . 10 ℤ ∈ V
3231mptex 5788 . . . . . . . . 9 (𝑥 ∈ ℤ ↦ (𝑥 + 1)) ∈ V
33 vex 2766 . . . . . . . . 9 𝑧 ∈ V
3432, 33fvex 5578 . . . . . . . 8 ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
3534ax-gen 1463 . . . . . . 7 𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
36 0z 9337 . . . . . . 7 0 ∈ ℤ
37 frecfnom 6459 . . . . . . 7 ((∀𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V ∧ 0 ∈ ℤ) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) Fn ω)
3835, 36, 37mp2an 426 . . . . . 6 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) Fn ω
39 fndm 5357 . . . . . 6 (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) Fn ω → dom frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = ω)
4038, 39ax-mp 5 . . . . 5 dom frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = ω
4140eleq2i 2263 . . . 4 (ω ∈ dom frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ↔ ω ∈ ω)
4230, 41mtbir 672 . . 3 ¬ ω ∈ dom frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
43 fsnunfv 5763 . . 3 ((ω ∈ V ∧ +∞ ∈ ℝ* ∧ ¬ ω ∈ dom frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) → ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘ω) = +∞)
4410, 27, 42, 43mp3an 1348 . 2 ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘ω) = +∞
4526, 44eqtrdi 2245 1 (ω ≼ 𝐴 → (♯‘𝐴) = +∞)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1362   = wceq 1364  wcel 2167  {crab 2479  Vcvv 2763  cun 3155  c0 3450  {csn 3622  cop 3625   cuni 3839   class class class wbr 4033  cmpt 4094  Ord word 4397  ωcom 4626  dom cdm 4663  ccom 4667  Rel wrel 4668  Fun wfun 5252   Fn wfn 5253  cfv 5258  (class class class)co 5922  freccfrec 6448  cdom 6798  0cc0 7879  1c1 7880   + caddc 7882  +∞cpnf 8058  *cxr 8060  cz 9326  chash 10867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976  ax-rnegex 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-recs 6363  df-frec 6449  df-dom 6801  df-pnf 8063  df-xr 8065  df-neg 8200  df-z 9327  df-ihash 10868
This theorem is referenced by:  filtinf  10883
  Copyright terms: Public domain W3C validator