Step | Hyp | Ref
| Expression |
1 | | df-ihash 10710 |
. . . . 5
⊢ ♯ =
((frec((𝑥 ∈ ℤ
↦ (𝑥 + 1)), 0) ∪
{〈ω, +∞〉}) ∘ (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})) |
2 | 1 | fveq1i 5497 |
. . . 4
⊢
(♯‘𝐴) =
(((frec((𝑥 ∈ ℤ
↦ (𝑥 + 1)), 0) ∪
{〈ω, +∞〉}) ∘ (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}))‘𝐴) |
3 | | funmpt 5236 |
. . . . 5
⊢ Fun
(𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}) |
4 | | funrel 5215 |
. . . . . . 7
⊢ (Fun
(𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}) → Rel (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})) |
5 | 3, 4 | ax-mp 5 |
. . . . . 6
⊢ Rel
(𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}) |
6 | | peano1 4578 |
. . . . . . 7
⊢ ∅
∈ ω |
7 | | reldom 6723 |
. . . . . . . . . 10
⊢ Rel
≼ |
8 | 7 | brrelex2i 4655 |
. . . . . . . . 9
⊢ (ω
≼ 𝐴 → 𝐴 ∈ V) |
9 | | hashinfuni 10711 |
. . . . . . . . . 10
⊢ (ω
≼ 𝐴 → ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} = ω) |
10 | | omex 4577 |
. . . . . . . . . 10
⊢ ω
∈ V |
11 | 9, 10 | eqeltrdi 2261 |
. . . . . . . . 9
⊢ (ω
≼ 𝐴 → ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} ∈ V) |
12 | | breq2 3993 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐴 → (𝑦 ≼ 𝑥 ↔ 𝑦 ≼ 𝐴)) |
13 | 12 | rabbidv 2719 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → {𝑦 ∈ (ω ∪ {ω}) ∣
𝑦 ≼ 𝑥} = {𝑦 ∈ (ω ∪ {ω}) ∣
𝑦 ≼ 𝐴}) |
14 | 13 | unieqd 3807 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → ∪ {𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝑥} = ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴}) |
15 | | eqid 2170 |
. . . . . . . . . 10
⊢ (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}) = (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}) |
16 | 14, 15 | fvmptg 5572 |
. . . . . . . . 9
⊢ ((𝐴 ∈ V ∧ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} ∈ V) → ((𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})‘𝐴) = ∪ {𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝐴}) |
17 | 8, 11, 16 | syl2anc 409 |
. . . . . . . 8
⊢ (ω
≼ 𝐴 → ((𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})‘𝐴) = ∪ {𝑦 ∈ (ω ∪
{ω}) ∣ 𝑦
≼ 𝐴}) |
18 | 17, 9 | eqtrd 2203 |
. . . . . . 7
⊢ (ω
≼ 𝐴 → ((𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})‘𝐴) = ω) |
19 | 6, 18 | eleqtrrid 2260 |
. . . . . 6
⊢ (ω
≼ 𝐴 → ∅
∈ ((𝑥 ∈ V ↦
∪ {𝑦 ∈ (ω ∪ {ω}) ∣
𝑦 ≼ 𝑥})‘𝐴)) |
20 | | relelfvdm 5528 |
. . . . . 6
⊢ ((Rel
(𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}) ∧ ∅ ∈ ((𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})‘𝐴)) → 𝐴 ∈ dom (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})) |
21 | 5, 19, 20 | sylancr 412 |
. . . . 5
⊢ (ω
≼ 𝐴 → 𝐴 ∈ dom (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})) |
22 | | fvco 5566 |
. . . . 5
⊢ ((Fun
(𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}) ∧ 𝐴 ∈ dom (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})) → (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω,
+∞〉}) ∘ (𝑥
∈ V ↦ ∪ {𝑦 ∈ (ω ∪ {ω}) ∣
𝑦 ≼ 𝑥}))‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω,
+∞〉})‘((𝑥
∈ V ↦ ∪ {𝑦 ∈ (ω ∪ {ω}) ∣
𝑦 ≼ 𝑥})‘𝐴))) |
23 | 3, 21, 22 | sylancr 412 |
. . . 4
⊢ (ω
≼ 𝐴 →
(((frec((𝑥 ∈ ℤ
↦ (𝑥 + 1)), 0) ∪
{〈ω, +∞〉}) ∘ (𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥}))‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω,
+∞〉})‘((𝑥
∈ V ↦ ∪ {𝑦 ∈ (ω ∪ {ω}) ∣
𝑦 ≼ 𝑥})‘𝐴))) |
24 | 2, 23 | eqtrid 2215 |
. . 3
⊢ (ω
≼ 𝐴 →
(♯‘𝐴) =
((frec((𝑥 ∈ ℤ
↦ (𝑥 + 1)), 0) ∪
{〈ω, +∞〉})‘((𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})‘𝐴))) |
25 | 18 | fveq2d 5500 |
. . 3
⊢ (ω
≼ 𝐴 →
((frec((𝑥 ∈ ℤ
↦ (𝑥 + 1)), 0) ∪
{〈ω, +∞〉})‘((𝑥 ∈ V ↦ ∪ {𝑦
∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})‘𝐴)) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω,
+∞〉})‘ω)) |
26 | 24, 25 | eqtrd 2203 |
. 2
⊢ (ω
≼ 𝐴 →
(♯‘𝐴) =
((frec((𝑥 ∈ ℤ
↦ (𝑥 + 1)), 0) ∪
{〈ω, +∞〉})‘ω)) |
27 | | pnfxr 7972 |
. . 3
⊢ +∞
∈ ℝ* |
28 | | ordom 4591 |
. . . . 5
⊢ Ord
ω |
29 | | ordirr 4526 |
. . . . 5
⊢ (Ord
ω → ¬ ω ∈ ω) |
30 | 28, 29 | ax-mp 5 |
. . . 4
⊢ ¬
ω ∈ ω |
31 | | zex 9221 |
. . . . . . . . . 10
⊢ ℤ
∈ V |
32 | 31 | mptex 5722 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℤ ↦ (𝑥 + 1)) ∈ V |
33 | | vex 2733 |
. . . . . . . . 9
⊢ 𝑧 ∈ V |
34 | 32, 33 | fvex 5516 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V |
35 | 34 | ax-gen 1442 |
. . . . . . 7
⊢
∀𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V |
36 | | 0z 9223 |
. . . . . . 7
⊢ 0 ∈
ℤ |
37 | | frecfnom 6380 |
. . . . . . 7
⊢
((∀𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V ∧ 0 ∈ ℤ) →
frec((𝑥 ∈ ℤ
↦ (𝑥 + 1)), 0) Fn
ω) |
38 | 35, 36, 37 | mp2an 424 |
. . . . . 6
⊢
frec((𝑥 ∈
ℤ ↦ (𝑥 + 1)),
0) Fn ω |
39 | | fndm 5297 |
. . . . . 6
⊢
(frec((𝑥 ∈
ℤ ↦ (𝑥 + 1)),
0) Fn ω → dom frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = ω) |
40 | 38, 39 | ax-mp 5 |
. . . . 5
⊢ dom
frec((𝑥 ∈ ℤ
↦ (𝑥 + 1)), 0) =
ω |
41 | 40 | eleq2i 2237 |
. . . 4
⊢ (ω
∈ dom frec((𝑥 ∈
ℤ ↦ (𝑥 + 1)),
0) ↔ ω ∈ ω) |
42 | 30, 41 | mtbir 666 |
. . 3
⊢ ¬
ω ∈ dom frec((𝑥
∈ ℤ ↦ (𝑥 +
1)), 0) |
43 | | fsnunfv 5697 |
. . 3
⊢ ((ω
∈ V ∧ +∞ ∈ ℝ* ∧ ¬ ω ∈
dom frec((𝑥 ∈ ℤ
↦ (𝑥 + 1)), 0))
→ ((frec((𝑥 ∈
ℤ ↦ (𝑥 + 1)),
0) ∪ {〈ω, +∞〉})‘ω) =
+∞) |
44 | 10, 27, 42, 43 | mp3an 1332 |
. 2
⊢
((frec((𝑥 ∈
ℤ ↦ (𝑥 + 1)),
0) ∪ {〈ω, +∞〉})‘ω) =
+∞ |
45 | 26, 44 | eqtrdi 2219 |
1
⊢ (ω
≼ 𝐴 →
(♯‘𝐴) =
+∞) |