ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashinfom GIF version

Theorem hashinfom 10712
Description: The value of the function on an infinite set. (Contributed by Jim Kingdon, 20-Feb-2022.)
Assertion
Ref Expression
hashinfom (ω ≼ 𝐴 → (♯‘𝐴) = +∞)

Proof of Theorem hashinfom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ihash 10710 . . . . 5 ♯ = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
21fveq1i 5497 . . . 4 (♯‘𝐴) = (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))‘𝐴)
3 funmpt 5236 . . . . 5 Fun (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})
4 funrel 5215 . . . . . . 7 (Fun (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) → Rel (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
53, 4ax-mp 5 . . . . . 6 Rel (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})
6 peano1 4578 . . . . . . 7 ∅ ∈ ω
7 reldom 6723 . . . . . . . . . 10 Rel ≼
87brrelex2i 4655 . . . . . . . . 9 (ω ≼ 𝐴𝐴 ∈ V)
9 hashinfuni 10711 . . . . . . . . . 10 (ω ≼ 𝐴 {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} = ω)
10 omex 4577 . . . . . . . . . 10 ω ∈ V
119, 10eqeltrdi 2261 . . . . . . . . 9 (ω ≼ 𝐴 {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ∈ V)
12 breq2 3993 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (𝑦𝑥𝑦𝐴))
1312rabbidv 2719 . . . . . . . . . . 11 (𝑥 = 𝐴 → {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥} = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
1413unieqd 3807 . . . . . . . . . 10 (𝑥 = 𝐴 {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥} = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
15 eqid 2170 . . . . . . . . . 10 (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) = (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})
1614, 15fvmptg 5572 . . . . . . . . 9 ((𝐴 ∈ V ∧ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ∈ V) → ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴) = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
178, 11, 16syl2anc 409 . . . . . . . 8 (ω ≼ 𝐴 → ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴) = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
1817, 9eqtrd 2203 . . . . . . 7 (ω ≼ 𝐴 → ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴) = ω)
196, 18eleqtrrid 2260 . . . . . 6 (ω ≼ 𝐴 → ∅ ∈ ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴))
20 relelfvdm 5528 . . . . . 6 ((Rel (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) ∧ ∅ ∈ ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)) → 𝐴 ∈ dom (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
215, 19, 20sylancr 412 . . . . 5 (ω ≼ 𝐴𝐴 ∈ dom (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
22 fvco 5566 . . . . 5 ((Fun (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) ∧ 𝐴 ∈ dom (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})) → (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)))
233, 21, 22sylancr 412 . . . 4 (ω ≼ 𝐴 → (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)))
242, 23eqtrid 2215 . . 3 (ω ≼ 𝐴 → (♯‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)))
2518fveq2d 5500 . . 3 (ω ≼ 𝐴 → ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘ω))
2624, 25eqtrd 2203 . 2 (ω ≼ 𝐴 → (♯‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘ω))
27 pnfxr 7972 . . 3 +∞ ∈ ℝ*
28 ordom 4591 . . . . 5 Ord ω
29 ordirr 4526 . . . . 5 (Ord ω → ¬ ω ∈ ω)
3028, 29ax-mp 5 . . . 4 ¬ ω ∈ ω
31 zex 9221 . . . . . . . . . 10 ℤ ∈ V
3231mptex 5722 . . . . . . . . 9 (𝑥 ∈ ℤ ↦ (𝑥 + 1)) ∈ V
33 vex 2733 . . . . . . . . 9 𝑧 ∈ V
3432, 33fvex 5516 . . . . . . . 8 ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
3534ax-gen 1442 . . . . . . 7 𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
36 0z 9223 . . . . . . 7 0 ∈ ℤ
37 frecfnom 6380 . . . . . . 7 ((∀𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V ∧ 0 ∈ ℤ) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) Fn ω)
3835, 36, 37mp2an 424 . . . . . 6 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) Fn ω
39 fndm 5297 . . . . . 6 (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) Fn ω → dom frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = ω)
4038, 39ax-mp 5 . . . . 5 dom frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = ω
4140eleq2i 2237 . . . 4 (ω ∈ dom frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ↔ ω ∈ ω)
4230, 41mtbir 666 . . 3 ¬ ω ∈ dom frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
43 fsnunfv 5697 . . 3 ((ω ∈ V ∧ +∞ ∈ ℝ* ∧ ¬ ω ∈ dom frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) → ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘ω) = +∞)
4410, 27, 42, 43mp3an 1332 . 2 ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘ω) = +∞
4526, 44eqtrdi 2219 1 (ω ≼ 𝐴 → (♯‘𝐴) = +∞)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1346   = wceq 1348  wcel 2141  {crab 2452  Vcvv 2730  cun 3119  c0 3414  {csn 3583  cop 3586   cuni 3796   class class class wbr 3989  cmpt 4050  Ord word 4347  ωcom 4574  dom cdm 4611  ccom 4615  Rel wrel 4616  Fun wfun 5192   Fn wfn 5193  cfv 5198  (class class class)co 5853  freccfrec 6369  cdom 6717  0cc0 7774  1c1 7775   + caddc 7777  +∞cpnf 7951  *cxr 7953  cz 9212  chash 10709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871  ax-rnegex 7883
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-recs 6284  df-frec 6370  df-dom 6720  df-pnf 7956  df-xr 7958  df-neg 8093  df-z 9213  df-ihash 10710
This theorem is referenced by:  filtinf  10726
  Copyright terms: Public domain W3C validator