ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashinfom GIF version

Theorem hashinfom 10758
Description: The value of the function on an infinite set. (Contributed by Jim Kingdon, 20-Feb-2022.)
Assertion
Ref Expression
hashinfom (ω ≼ 𝐴 → (♯‘𝐴) = +∞)

Proof of Theorem hashinfom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ihash 10756 . . . . 5 ♯ = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
21fveq1i 5517 . . . 4 (♯‘𝐴) = (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))‘𝐴)
3 funmpt 5255 . . . . 5 Fun (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})
4 funrel 5234 . . . . . . 7 (Fun (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) → Rel (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
53, 4ax-mp 5 . . . . . 6 Rel (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})
6 peano1 4594 . . . . . . 7 ∅ ∈ ω
7 reldom 6745 . . . . . . . . . 10 Rel ≼
87brrelex2i 4671 . . . . . . . . 9 (ω ≼ 𝐴𝐴 ∈ V)
9 hashinfuni 10757 . . . . . . . . . 10 (ω ≼ 𝐴 {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} = ω)
10 omex 4593 . . . . . . . . . 10 ω ∈ V
119, 10eqeltrdi 2268 . . . . . . . . 9 (ω ≼ 𝐴 {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ∈ V)
12 breq2 4008 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (𝑦𝑥𝑦𝐴))
1312rabbidv 2727 . . . . . . . . . . 11 (𝑥 = 𝐴 → {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥} = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
1413unieqd 3821 . . . . . . . . . 10 (𝑥 = 𝐴 {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥} = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
15 eqid 2177 . . . . . . . . . 10 (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) = (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})
1614, 15fvmptg 5593 . . . . . . . . 9 ((𝐴 ∈ V ∧ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ∈ V) → ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴) = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
178, 11, 16syl2anc 411 . . . . . . . 8 (ω ≼ 𝐴 → ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴) = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
1817, 9eqtrd 2210 . . . . . . 7 (ω ≼ 𝐴 → ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴) = ω)
196, 18eleqtrrid 2267 . . . . . 6 (ω ≼ 𝐴 → ∅ ∈ ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴))
20 relelfvdm 5548 . . . . . 6 ((Rel (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) ∧ ∅ ∈ ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)) → 𝐴 ∈ dom (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
215, 19, 20sylancr 414 . . . . 5 (ω ≼ 𝐴𝐴 ∈ dom (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
22 fvco 5587 . . . . 5 ((Fun (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) ∧ 𝐴 ∈ dom (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})) → (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)))
233, 21, 22sylancr 414 . . . 4 (ω ≼ 𝐴 → (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)))
242, 23eqtrid 2222 . . 3 (ω ≼ 𝐴 → (♯‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)))
2518fveq2d 5520 . . 3 (ω ≼ 𝐴 → ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘ω))
2624, 25eqtrd 2210 . 2 (ω ≼ 𝐴 → (♯‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘ω))
27 pnfxr 8010 . . 3 +∞ ∈ ℝ*
28 ordom 4607 . . . . 5 Ord ω
29 ordirr 4542 . . . . 5 (Ord ω → ¬ ω ∈ ω)
3028, 29ax-mp 5 . . . 4 ¬ ω ∈ ω
31 zex 9262 . . . . . . . . . 10 ℤ ∈ V
3231mptex 5743 . . . . . . . . 9 (𝑥 ∈ ℤ ↦ (𝑥 + 1)) ∈ V
33 vex 2741 . . . . . . . . 9 𝑧 ∈ V
3432, 33fvex 5536 . . . . . . . 8 ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
3534ax-gen 1449 . . . . . . 7 𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
36 0z 9264 . . . . . . 7 0 ∈ ℤ
37 frecfnom 6402 . . . . . . 7 ((∀𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V ∧ 0 ∈ ℤ) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) Fn ω)
3835, 36, 37mp2an 426 . . . . . 6 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) Fn ω
39 fndm 5316 . . . . . 6 (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) Fn ω → dom frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = ω)
4038, 39ax-mp 5 . . . . 5 dom frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = ω
4140eleq2i 2244 . . . 4 (ω ∈ dom frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ↔ ω ∈ ω)
4230, 41mtbir 671 . . 3 ¬ ω ∈ dom frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
43 fsnunfv 5718 . . 3 ((ω ∈ V ∧ +∞ ∈ ℝ* ∧ ¬ ω ∈ dom frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) → ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘ω) = +∞)
4410, 27, 42, 43mp3an 1337 . 2 ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘ω) = +∞
4526, 44eqtrdi 2226 1 (ω ≼ 𝐴 → (♯‘𝐴) = +∞)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1351   = wceq 1353  wcel 2148  {crab 2459  Vcvv 2738  cun 3128  c0 3423  {csn 3593  cop 3596   cuni 3810   class class class wbr 4004  cmpt 4065  Ord word 4363  ωcom 4590  dom cdm 4627  ccom 4631  Rel wrel 4632  Fun wfun 5211   Fn wfn 5212  cfv 5217  (class class class)co 5875  freccfrec 6391  cdom 6739  0cc0 7811  1c1 7812   + caddc 7814  +∞cpnf 7989  *cxr 7991  cz 9253  chash 10755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908  ax-rnegex 7920
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-recs 6306  df-frec 6392  df-dom 6742  df-pnf 7994  df-xr 7996  df-neg 8131  df-z 9254  df-ihash 10756
This theorem is referenced by:  filtinf  10771
  Copyright terms: Public domain W3C validator