ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ihash Unicode version

Definition df-ihash 10953
Description: Define the set size function ♯, which gives the cardinality of a finite set as a member of 
NN0, and assigns all infinite sets the value +oo. For example,  ( `  {
0 ,  1 ,  2 } )  =  3.

Since we don't know that an arbitrary set is either finite or infinite (by inffiexmid 7024), the behavior beyond finite sets is not as useful as it might appear. For example, we wouldn't expect to be able to define this function in a meaningful way on  ~P 1o, which cannot be shown to be finite (per pw1fin 7028).

Note that we use the sharp sign (♯) for this function and we use the different character octothorpe (#) for the apartness relation (see df-ap 8685). We adopt the former notation from Corollary 8.2.4 of [AczelRathjen], p. 80 (although that work only defines it for finite sets).

This definition (in terms of  U. and 
~<_) is not taken directly from the literature, but for finite sets should be equivalent to the conventional definition that the size of a finite set is the unique natural number which is equinumerous to the given set. (Contributed by Jim Kingdon, 19-Feb-2022.)

Assertion
Ref Expression
df-ihash  |- =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u. 
{ <. om , +oo >. } )  o.  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
Distinct variable group:    x, y

Detailed syntax breakdown of Definition df-ihash
StepHypRef Expression
1 chash 10952 . 2  class
2 vx . . . . . 6  setvar  x
3 cz 9402 . . . . . 6  class  ZZ
42cv 1372 . . . . . . 7  class  x
5 c1 7956 . . . . . . 7  class  1
6 caddc 7958 . . . . . . 7  class  +
74, 5, 6co 5962 . . . . . 6  class  ( x  +  1 )
82, 3, 7cmpt 4116 . . . . 5  class  ( x  e.  ZZ  |->  ( x  +  1 ) )
9 cc0 7955 . . . . 5  class  0
108, 9cfrec 6494 . . . 4  class frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )
11 com 4651 . . . . . 6  class  om
12 cpnf 8134 . . . . . 6  class +oo
1311, 12cop 3641 . . . . 5  class  <. om , +oo >.
1413csn 3638 . . . 4  class  { <. om , +oo >. }
1510, 14cun 3168 . . 3  class  (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  u.  { <. om , +oo >. } )
16 cvv 2773 . . . 4  class  _V
17 vy . . . . . . . 8  setvar  y
1817cv 1372 . . . . . . 7  class  y
19 cdom 6844 . . . . . . 7  class  ~<_
2018, 4, 19wbr 4054 . . . . . 6  wff  y  ~<_  x
2111csn 3638 . . . . . . 7  class  { om }
2211, 21cun 3168 . . . . . 6  class  ( om  u.  { om }
)
2320, 17, 22crab 2489 . . . . 5  class  { y  e.  ( om  u.  { om } )  |  y  ~<_  x }
2423cuni 3859 . . . 4  class  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x }
252, 16, 24cmpt 4116 . . 3  class  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } )
2615, 25ccom 4692 . 2  class  ( (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )  u.  { <. om , +oo >. } )  o.  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) )
271, 26wceq 1373 1  wff =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u. 
{ <. om , +oo >. } )  o.  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
Colors of variables: wff set class
This definition is referenced by:  hashinfom  10955  hashennn  10957
  Copyright terms: Public domain W3C validator