ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ihash Unicode version

Definition df-ihash 10993
Description: Define the set size function ♯, which gives the cardinality of a finite set as a member of 
NN0, and assigns all infinite sets the value +oo. For example,  ( `  {
0 ,  1 ,  2 } )  =  3.

Since we don't know that an arbitrary set is either finite or infinite (by inffiexmid 7064), the behavior beyond finite sets is not as useful as it might appear. For example, we wouldn't expect to be able to define this function in a meaningful way on  ~P 1o, which cannot be shown to be finite (per pw1fin 7068).

Note that we use the sharp sign (♯) for this function and we use the different character octothorpe (#) for the apartness relation (see df-ap 8725). We adopt the former notation from Corollary 8.2.4 of [AczelRathjen], p. 80 (although that work only defines it for finite sets).

This definition (in terms of  U. and 
~<_) is not taken directly from the literature, but for finite sets should be equivalent to the conventional definition that the size of a finite set is the unique natural number which is equinumerous to the given set. (Contributed by Jim Kingdon, 19-Feb-2022.)

Assertion
Ref Expression
df-ihash  |- =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u. 
{ <. om , +oo >. } )  o.  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
Distinct variable group:    x, y

Detailed syntax breakdown of Definition df-ihash
StepHypRef Expression
1 chash 10992 . 2  class
2 vx . . . . . 6  setvar  x
3 cz 9442 . . . . . 6  class  ZZ
42cv 1394 . . . . . . 7  class  x
5 c1 7996 . . . . . . 7  class  1
6 caddc 7998 . . . . . . 7  class  +
74, 5, 6co 6000 . . . . . 6  class  ( x  +  1 )
82, 3, 7cmpt 4144 . . . . 5  class  ( x  e.  ZZ  |->  ( x  +  1 ) )
9 cc0 7995 . . . . 5  class  0
108, 9cfrec 6534 . . . 4  class frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )
11 com 4681 . . . . . 6  class  om
12 cpnf 8174 . . . . . 6  class +oo
1311, 12cop 3669 . . . . 5  class  <. om , +oo >.
1413csn 3666 . . . 4  class  { <. om , +oo >. }
1510, 14cun 3195 . . 3  class  (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  u.  { <. om , +oo >. } )
16 cvv 2799 . . . 4  class  _V
17 vy . . . . . . . 8  setvar  y
1817cv 1394 . . . . . . 7  class  y
19 cdom 6884 . . . . . . 7  class  ~<_
2018, 4, 19wbr 4082 . . . . . 6  wff  y  ~<_  x
2111csn 3666 . . . . . . 7  class  { om }
2211, 21cun 3195 . . . . . 6  class  ( om  u.  { om }
)
2320, 17, 22crab 2512 . . . . 5  class  { y  e.  ( om  u.  { om } )  |  y  ~<_  x }
2423cuni 3887 . . . 4  class  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x }
252, 16, 24cmpt 4144 . . 3  class  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } )
2615, 25ccom 4722 . 2  class  ( (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )  u.  { <. om , +oo >. } )  o.  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) )
271, 26wceq 1395 1  wff =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u. 
{ <. om , +oo >. } )  o.  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
Colors of variables: wff set class
This definition is referenced by:  hashinfom  10995  hashennn  10997
  Copyright terms: Public domain W3C validator