ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iress Unicode version

Definition df-iress 12686
Description: Define a multifunction restriction operator for extensible structures, which can be used to turn statements about rings into statements about subrings, modules into submodules, etc. This definition knows nothing about individual structures and merely truncates the  Base set while leaving operators alone; individual kinds of structures will need to handle this behavior, by ignoring operators' values outside the range, defining a function using the base set and applying that, or explicitly truncating the slot before use.

(Credit for this operator, as well as the 2023 modification for iset.mm, goes to Mario Carneiro.)

(Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 7-Oct-2023.)

Assertion
Ref Expression
df-iress  |-s  =  ( w  e.  _V ,  x  e. 
_V  |->  ( w sSet  <. (
Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>. ) )
Distinct variable group:    x, w

Detailed syntax breakdown of Definition df-iress
StepHypRef Expression
1 cress 12679 . 2  classs
2 vw . . 3  setvar  w
3 vx . . 3  setvar  x
4 cvv 2763 . . 3  class  _V
52cv 1363 . . . 4  class  w
6 cnx 12675 . . . . . 6  class  ndx
7 cbs 12678 . . . . . 6  class  Base
86, 7cfv 5258 . . . . 5  class  ( Base `  ndx )
93cv 1363 . . . . . 6  class  x
105, 7cfv 5258 . . . . . 6  class  ( Base `  w )
119, 10cin 3156 . . . . 5  class  ( x  i^i  ( Base `  w
) )
128, 11cop 3625 . . . 4  class  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>.
13 csts 12676 . . . 4  class sSet
145, 12, 13co 5922 . . 3  class  ( w sSet  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w
) ) >. )
152, 3, 4, 4, 14cmpo 5924 . 2  class  ( w  e.  _V ,  x  e.  _V  |->  ( w sSet  <. (
Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>. ) )
161, 15wceq 1364 1  wffs  =  ( w  e.  _V ,  x  e. 
_V  |->  ( w sSet  <. (
Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>. ) )
Colors of variables: wff set class
This definition is referenced by:  reldmress  12741  ressvalsets  12742
  Copyright terms: Public domain W3C validator