ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iress Unicode version

Definition df-iress 13035
Description: Define a multifunction restriction operator for extensible structures, which can be used to turn statements about rings into statements about subrings, modules into submodules, etc. This definition knows nothing about individual structures and merely truncates the  Base set while leaving operators alone; individual kinds of structures will need to handle this behavior, by ignoring operators' values outside the range, defining a function using the base set and applying that, or explicitly truncating the slot before use.

(Credit for this operator, as well as the 2023 modification for iset.mm, goes to Mario Carneiro.)

(Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 7-Oct-2023.)

Assertion
Ref Expression
df-iress  |-s  =  ( w  e.  _V ,  x  e. 
_V  |->  ( w sSet  <. (
Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>. ) )
Distinct variable group:    x, w

Detailed syntax breakdown of Definition df-iress
StepHypRef Expression
1 cress 13028 . 2  classs
2 vw . . 3  setvar  w
3 vx . . 3  setvar  x
4 cvv 2799 . . 3  class  _V
52cv 1394 . . . 4  class  w
6 cnx 13024 . . . . . 6  class  ndx
7 cbs 13027 . . . . . 6  class  Base
86, 7cfv 5317 . . . . 5  class  ( Base `  ndx )
93cv 1394 . . . . . 6  class  x
105, 7cfv 5317 . . . . . 6  class  ( Base `  w )
119, 10cin 3196 . . . . 5  class  ( x  i^i  ( Base `  w
) )
128, 11cop 3669 . . . 4  class  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>.
13 csts 13025 . . . 4  class sSet
145, 12, 13co 6000 . . 3  class  ( w sSet  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w
) ) >. )
152, 3, 4, 4, 14cmpo 6002 . 2  class  ( w  e.  _V ,  x  e.  _V  |->  ( w sSet  <. (
Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>. ) )
161, 15wceq 1395 1  wffs  =  ( w  e.  _V ,  x  e. 
_V  |->  ( w sSet  <. (
Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>. ) )
Colors of variables: wff set class
This definition is referenced by:  reldmress  13091  ressvalsets  13092
  Copyright terms: Public domain W3C validator