ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iress Unicode version

Definition df-iress 12472
Description: Define a multifunction restriction operator for extensible structures, which can be used to turn statements about rings into statements about subrings, modules into submodules, etc. This definition knows nothing about individual structures and merely truncates the  Base set while leaving operators alone; individual kinds of structures will need to handle this behavior, by ignoring operators' values outside the range, defining a function using the base set and applying that, or explicitly truncating the slot before use.

(Credit for this operator, as well as the 2023 modification for iset.mm, goes to Mario Carneiro.)

(Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 7-Oct-2023.)

Assertion
Ref Expression
df-iress  |-s  =  ( w  e.  _V ,  x  e. 
_V  |->  ( w sSet  <. (
Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>. ) )
Distinct variable group:    x, w

Detailed syntax breakdown of Definition df-iress
StepHypRef Expression
1 cress 12465 . 2  classs
2 vw . . 3  setvar  w
3 vx . . 3  setvar  x
4 cvv 2739 . . 3  class  _V
52cv 1352 . . . 4  class  w
6 cnx 12461 . . . . . 6  class  ndx
7 cbs 12464 . . . . . 6  class  Base
86, 7cfv 5218 . . . . 5  class  ( Base `  ndx )
93cv 1352 . . . . . 6  class  x
105, 7cfv 5218 . . . . . 6  class  ( Base `  w )
119, 10cin 3130 . . . . 5  class  ( x  i^i  ( Base `  w
) )
128, 11cop 3597 . . . 4  class  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>.
13 csts 12462 . . . 4  class sSet
145, 12, 13co 5877 . . 3  class  ( w sSet  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w
) ) >. )
152, 3, 4, 4, 14cmpo 5879 . 2  class  ( w  e.  _V ,  x  e.  _V  |->  ( w sSet  <. (
Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>. ) )
161, 15wceq 1353 1  wffs  =  ( w  e.  _V ,  x  e. 
_V  |->  ( w sSet  <. (
Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>. ) )
Colors of variables: wff set class
This definition is referenced by:  reldmress  12525  ressvalsets  12526
  Copyright terms: Public domain W3C validator