Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  brstruct GIF version

Theorem brstruct 11652
 Description: The structure relation is a relation. (Contributed by Mario Carneiro, 29-Aug-2015.)
Assertion
Ref Expression
brstruct Rel Struct

Proof of Theorem brstruct
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-struct 11645 . 2 Struct = {⟨𝑓, 𝑥⟩ ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))}
21relopabi 4593 1 Rel Struct
 Colors of variables: wff set class Syntax hints:   ∧ w3a 927   ∈ wcel 1445   ∖ cdif 3010   ∩ cin 3012   ⊆ wss 3013  ∅c0 3302  {csn 3466   × cxp 4465  dom cdm 4467  Rel wrel 4472  Fun wfun 5043  ‘cfv 5049   ≤ cle 7620  ℕcn 8520  ...cfz 9573   Struct cstr 11639 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060 This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-opab 3922  df-xp 4473  df-rel 4474  df-struct 11645 This theorem is referenced by:  isstruct2im  11653  structex  11655
 Copyright terms: Public domain W3C validator