Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > brstruct | GIF version |
Description: The structure relation is a relation. (Contributed by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
brstruct | ⊢ Rel Struct |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-struct 12429 | . 2 ⊢ Struct = {〈𝑓, 𝑥〉 ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))} | |
2 | 1 | relopabi 4746 | 1 ⊢ Rel Struct |
Colors of variables: wff set class |
Syntax hints: ∧ w3a 978 ∈ wcel 2146 ∖ cdif 3124 ∩ cin 3126 ⊆ wss 3127 ∅c0 3420 {csn 3589 × cxp 4618 dom cdm 4620 Rel wrel 4625 Fun wfun 5202 ‘cfv 5208 ≤ cle 7967 ℕcn 8890 ...cfz 9977 Struct cstr 12423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-opab 4060 df-xp 4626 df-rel 4627 df-struct 12429 |
This theorem is referenced by: isstruct2im 12437 structex 12439 |
Copyright terms: Public domain | W3C validator |