![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > brstruct | GIF version |
Description: The structure relation is a relation. (Contributed by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
brstruct | ⊢ Rel Struct |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-struct 11645 | . 2 ⊢ Struct = {〈𝑓, 𝑥〉 ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))} | |
2 | 1 | relopabi 4593 | 1 ⊢ Rel Struct |
Colors of variables: wff set class |
Syntax hints: ∧ w3a 927 ∈ wcel 1445 ∖ cdif 3010 ∩ cin 3012 ⊆ wss 3013 ∅c0 3302 {csn 3466 × cxp 4465 dom cdm 4467 Rel wrel 4472 Fun wfun 5043 ‘cfv 5049 ≤ cle 7620 ℕcn 8520 ...cfz 9573 Struct cstr 11639 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-v 2635 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-opab 3922 df-xp 4473 df-rel 4474 df-struct 11645 |
This theorem is referenced by: isstruct2im 11653 structex 11655 |
Copyright terms: Public domain | W3C validator |