ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmress GIF version

Theorem reldmress 12684
Description: The structure restriction is a proper operator, so it can be used with ovprc1 5955. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Assertion
Ref Expression
reldmress Rel dom ↾s

Proof of Theorem reldmress
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iress 12629 . 2 s = (𝑦 ∈ V, 𝑥 ∈ V ↦ (𝑦 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑦))⟩))
21reldmmpo 6031 1 Rel dom ↾s
Colors of variables: wff set class
Syntax hints:  Vcvv 2760  cin 3153  cop 3622  dom cdm 4660  Rel wrel 4665  cfv 5255  (class class class)co 5919  ndxcnx 12618   sSet csts 12619  Basecbs 12621  s cress 12622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-rel 4667  df-dm 4670  df-oprab 5923  df-mpo 5924  df-iress 12629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator