ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmress GIF version

Theorem reldmress 13091
Description: The structure restriction is a proper operator, so it can be used with ovprc1 6037. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Assertion
Ref Expression
reldmress Rel dom ↾s

Proof of Theorem reldmress
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iress 13035 . 2 s = (𝑦 ∈ V, 𝑥 ∈ V ↦ (𝑦 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑦))⟩))
21reldmmpo 6115 1 Rel dom ↾s
Colors of variables: wff set class
Syntax hints:  Vcvv 2799  cin 3196  cop 3669  dom cdm 4718  Rel wrel 4723  cfv 5317  (class class class)co 6000  ndxcnx 13024   sSet csts 13025  Basecbs 13027  s cress 13028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-dm 4728  df-oprab 6004  df-mpo 6005  df-iress 13035
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator