| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reldmress | GIF version | ||
| Description: The structure restriction is a proper operator, so it can be used with ovprc1 5999. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| Ref | Expression |
|---|---|
| reldmress | ⊢ Rel dom ↾s |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iress 12925 | . 2 ⊢ ↾s = (𝑦 ∈ V, 𝑥 ∈ V ↦ (𝑦 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑦))〉)) | |
| 2 | 1 | reldmmpo 6075 | 1 ⊢ Rel dom ↾s |
| Colors of variables: wff set class |
| Syntax hints: Vcvv 2773 ∩ cin 3169 〈cop 3641 dom cdm 4688 Rel wrel 4693 ‘cfv 5285 (class class class)co 5962 ndxcnx 12914 sSet csts 12915 Basecbs 12917 ↾s cress 12918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4055 df-opab 4117 df-xp 4694 df-rel 4695 df-dm 4698 df-oprab 5966 df-mpo 5967 df-iress 12925 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |