ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmress GIF version

Theorem reldmress 12766
Description: The structure restriction is a proper operator, so it can be used with ovprc1 5962. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Assertion
Ref Expression
reldmress Rel dom ↾s

Proof of Theorem reldmress
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iress 12711 . 2 s = (𝑦 ∈ V, 𝑥 ∈ V ↦ (𝑦 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑦))⟩))
21reldmmpo 6038 1 Rel dom ↾s
Colors of variables: wff set class
Syntax hints:  Vcvv 2763  cin 3156  cop 3626  dom cdm 4664  Rel wrel 4669  cfv 5259  (class class class)co 5925  ndxcnx 12700   sSet csts 12701  Basecbs 12703  s cress 12704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-xp 4670  df-rel 4671  df-dm 4674  df-oprab 5929  df-mpo 5930  df-iress 12711
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator