ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmress GIF version

Theorem reldmress 12523
Description: The structure restriction is a proper operator, so it can be used with ovprc1 5911. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Assertion
Ref Expression
reldmress Rel dom ↾s

Proof of Theorem reldmress
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iress 12470 . 2 s = (𝑦 ∈ V, 𝑥 ∈ V ↦ (𝑦 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑦))⟩))
21reldmmpo 5986 1 Rel dom ↾s
Colors of variables: wff set class
Syntax hints:  Vcvv 2738  cin 3129  cop 3596  dom cdm 4627  Rel wrel 4632  cfv 5217  (class class class)co 5875  ndxcnx 12459   sSet csts 12460  Basecbs 12462  s cress 12463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066  df-xp 4633  df-rel 4634  df-dm 4637  df-oprab 5879  df-mpo 5880  df-iress 12470
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator