| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressvalsets | GIF version | ||
| Description: Value of structure restriction. (Contributed by Jim Kingdon, 16-Jan-2025.) |
| Ref | Expression |
|---|---|
| ressvalsets | ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2783 | . . 3 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑊 ∈ V) |
| 3 | elex 2783 | . . 3 ⊢ (𝐴 ∈ 𝑌 → 𝐴 ∈ V) | |
| 4 | 3 | adantl 277 | . 2 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝐴 ∈ V) |
| 5 | simpl 109 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑊 ∈ 𝑋) | |
| 6 | basendxnn 12888 | . . . 4 ⊢ (Base‘ndx) ∈ ℕ | |
| 7 | 6 | a1i 9 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (Base‘ndx) ∈ ℕ) |
| 8 | inex1g 4180 | . . . 4 ⊢ (𝐴 ∈ 𝑌 → (𝐴 ∩ (Base‘𝑊)) ∈ V) | |
| 9 | 8 | adantl 277 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝐴 ∩ (Base‘𝑊)) ∈ V) |
| 10 | setsex 12864 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ (Base‘ndx) ∈ ℕ ∧ (𝐴 ∩ (Base‘𝑊)) ∈ V) → (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉) ∈ V) | |
| 11 | 5, 7, 9, 10 | syl3anc 1250 | . 2 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉) ∈ V) |
| 12 | id 19 | . . . 4 ⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) | |
| 13 | fveq2 5576 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
| 14 | 13 | ineq2d 3374 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑥 ∩ (Base‘𝑤)) = (𝑥 ∩ (Base‘𝑊))) |
| 15 | 14 | opeq2d 3826 | . . . 4 ⊢ (𝑤 = 𝑊 → 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉 = 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑊))〉) |
| 16 | 12, 15 | oveq12d 5962 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉) = (𝑊 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑊))〉)) |
| 17 | ineq1 3367 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ (Base‘𝑊)) = (𝐴 ∩ (Base‘𝑊))) | |
| 18 | 17 | opeq2d 3826 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑊))〉 = 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉) |
| 19 | 18 | oveq2d 5960 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑊 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑊))〉) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
| 20 | df-iress 12840 | . . 3 ⊢ ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉)) | |
| 21 | 16, 19, 20 | ovmpog 6080 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ V ∧ (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉) ∈ V) → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
| 22 | 2, 4, 11, 21 | syl3anc 1250 | 1 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 Vcvv 2772 ∩ cin 3165 〈cop 3636 ‘cfv 5271 (class class class)co 5944 ℕcn 9036 ndxcnx 12829 sSet csts 12830 Basecbs 12832 ↾s cress 12833 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-inn 9037 df-ndx 12835 df-slot 12836 df-base 12838 df-sets 12839 df-iress 12840 |
| This theorem is referenced by: ressex 12897 ressval2 12898 ressbasd 12899 strressid 12903 ressval3d 12904 resseqnbasd 12905 ressinbasd 12906 ressressg 12907 mgpress 13693 |
| Copyright terms: Public domain | W3C validator |