ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressvalsets GIF version

Theorem ressvalsets 12896
Description: Value of structure restriction. (Contributed by Jim Kingdon, 16-Jan-2025.)
Assertion
Ref Expression
ressvalsets ((𝑊𝑋𝐴𝑌) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))

Proof of Theorem ressvalsets
Dummy variables 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2783 . . 3 (𝑊𝑋𝑊 ∈ V)
21adantr 276 . 2 ((𝑊𝑋𝐴𝑌) → 𝑊 ∈ V)
3 elex 2783 . . 3 (𝐴𝑌𝐴 ∈ V)
43adantl 277 . 2 ((𝑊𝑋𝐴𝑌) → 𝐴 ∈ V)
5 simpl 109 . . 3 ((𝑊𝑋𝐴𝑌) → 𝑊𝑋)
6 basendxnn 12888 . . . 4 (Base‘ndx) ∈ ℕ
76a1i 9 . . 3 ((𝑊𝑋𝐴𝑌) → (Base‘ndx) ∈ ℕ)
8 inex1g 4180 . . . 4 (𝐴𝑌 → (𝐴 ∩ (Base‘𝑊)) ∈ V)
98adantl 277 . . 3 ((𝑊𝑋𝐴𝑌) → (𝐴 ∩ (Base‘𝑊)) ∈ V)
10 setsex 12864 . . 3 ((𝑊𝑋 ∧ (Base‘ndx) ∈ ℕ ∧ (𝐴 ∩ (Base‘𝑊)) ∈ V) → (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) ∈ V)
115, 7, 9, 10syl3anc 1250 . 2 ((𝑊𝑋𝐴𝑌) → (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) ∈ V)
12 id 19 . . . 4 (𝑤 = 𝑊𝑤 = 𝑊)
13 fveq2 5576 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
1413ineq2d 3374 . . . . 5 (𝑤 = 𝑊 → (𝑥 ∩ (Base‘𝑤)) = (𝑥 ∩ (Base‘𝑊)))
1514opeq2d 3826 . . . 4 (𝑤 = 𝑊 → ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩ = ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑊))⟩)
1612, 15oveq12d 5962 . . 3 (𝑤 = 𝑊 → (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩) = (𝑊 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑊))⟩))
17 ineq1 3367 . . . . 5 (𝑥 = 𝐴 → (𝑥 ∩ (Base‘𝑊)) = (𝐴 ∩ (Base‘𝑊)))
1817opeq2d 3826 . . . 4 (𝑥 = 𝐴 → ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑊))⟩ = ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)
1918oveq2d 5960 . . 3 (𝑥 = 𝐴 → (𝑊 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑊))⟩) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
20 df-iress 12840 . . 3 s = (𝑤 ∈ V, 𝑥 ∈ V ↦ (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩))
2116, 19, 20ovmpog 6080 . 2 ((𝑊 ∈ V ∧ 𝐴 ∈ V ∧ (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) ∈ V) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
222, 4, 11, 21syl3anc 1250 1 ((𝑊𝑋𝐴𝑌) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2176  Vcvv 2772  cin 3165  cop 3636  cfv 5271  (class class class)co 5944  cn 9036  ndxcnx 12829   sSet csts 12830  Basecbs 12832  s cress 12833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-inn 9037  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840
This theorem is referenced by:  ressex  12897  ressval2  12898  ressbasd  12899  strressid  12903  ressval3d  12904  resseqnbasd  12905  ressinbasd  12906  ressressg  12907  mgpress  13693
  Copyright terms: Public domain W3C validator