ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressvalsets GIF version

Theorem ressvalsets 12685
Description: Value of structure restriction. (Contributed by Jim Kingdon, 16-Jan-2025.)
Assertion
Ref Expression
ressvalsets ((𝑊𝑋𝐴𝑌) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))

Proof of Theorem ressvalsets
Dummy variables 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2771 . . 3 (𝑊𝑋𝑊 ∈ V)
21adantr 276 . 2 ((𝑊𝑋𝐴𝑌) → 𝑊 ∈ V)
3 elex 2771 . . 3 (𝐴𝑌𝐴 ∈ V)
43adantl 277 . 2 ((𝑊𝑋𝐴𝑌) → 𝐴 ∈ V)
5 simpl 109 . . 3 ((𝑊𝑋𝐴𝑌) → 𝑊𝑋)
6 basendxnn 12677 . . . 4 (Base‘ndx) ∈ ℕ
76a1i 9 . . 3 ((𝑊𝑋𝐴𝑌) → (Base‘ndx) ∈ ℕ)
8 inex1g 4166 . . . 4 (𝐴𝑌 → (𝐴 ∩ (Base‘𝑊)) ∈ V)
98adantl 277 . . 3 ((𝑊𝑋𝐴𝑌) → (𝐴 ∩ (Base‘𝑊)) ∈ V)
10 setsex 12653 . . 3 ((𝑊𝑋 ∧ (Base‘ndx) ∈ ℕ ∧ (𝐴 ∩ (Base‘𝑊)) ∈ V) → (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) ∈ V)
115, 7, 9, 10syl3anc 1249 . 2 ((𝑊𝑋𝐴𝑌) → (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) ∈ V)
12 id 19 . . . 4 (𝑤 = 𝑊𝑤 = 𝑊)
13 fveq2 5555 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
1413ineq2d 3361 . . . . 5 (𝑤 = 𝑊 → (𝑥 ∩ (Base‘𝑤)) = (𝑥 ∩ (Base‘𝑊)))
1514opeq2d 3812 . . . 4 (𝑤 = 𝑊 → ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩ = ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑊))⟩)
1612, 15oveq12d 5937 . . 3 (𝑤 = 𝑊 → (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩) = (𝑊 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑊))⟩))
17 ineq1 3354 . . . . 5 (𝑥 = 𝐴 → (𝑥 ∩ (Base‘𝑊)) = (𝐴 ∩ (Base‘𝑊)))
1817opeq2d 3812 . . . 4 (𝑥 = 𝐴 → ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑊))⟩ = ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)
1918oveq2d 5935 . . 3 (𝑥 = 𝐴 → (𝑊 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑊))⟩) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
20 df-iress 12629 . . 3 s = (𝑤 ∈ V, 𝑥 ∈ V ↦ (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩))
2116, 19, 20ovmpog 6054 . 2 ((𝑊 ∈ V ∧ 𝐴 ∈ V ∧ (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) ∈ V) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
222, 4, 11, 21syl3anc 1249 1 ((𝑊𝑋𝐴𝑌) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  cin 3153  cop 3622  cfv 5255  (class class class)co 5919  cn 8984  ndxcnx 12618   sSet csts 12619  Basecbs 12621  s cress 12622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-inn 8985  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629
This theorem is referenced by:  ressex  12686  ressval2  12687  ressbasd  12688  strressid  12692  ressval3d  12693  resseqnbasd  12694  ressinbasd  12695  ressressg  12696  mgpress  13430
  Copyright terms: Public domain W3C validator