ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressvalsets GIF version

Theorem ressvalsets 12767
Description: Value of structure restriction. (Contributed by Jim Kingdon, 16-Jan-2025.)
Assertion
Ref Expression
ressvalsets ((𝑊𝑋𝐴𝑌) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))

Proof of Theorem ressvalsets
Dummy variables 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2774 . . 3 (𝑊𝑋𝑊 ∈ V)
21adantr 276 . 2 ((𝑊𝑋𝐴𝑌) → 𝑊 ∈ V)
3 elex 2774 . . 3 (𝐴𝑌𝐴 ∈ V)
43adantl 277 . 2 ((𝑊𝑋𝐴𝑌) → 𝐴 ∈ V)
5 simpl 109 . . 3 ((𝑊𝑋𝐴𝑌) → 𝑊𝑋)
6 basendxnn 12759 . . . 4 (Base‘ndx) ∈ ℕ
76a1i 9 . . 3 ((𝑊𝑋𝐴𝑌) → (Base‘ndx) ∈ ℕ)
8 inex1g 4170 . . . 4 (𝐴𝑌 → (𝐴 ∩ (Base‘𝑊)) ∈ V)
98adantl 277 . . 3 ((𝑊𝑋𝐴𝑌) → (𝐴 ∩ (Base‘𝑊)) ∈ V)
10 setsex 12735 . . 3 ((𝑊𝑋 ∧ (Base‘ndx) ∈ ℕ ∧ (𝐴 ∩ (Base‘𝑊)) ∈ V) → (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) ∈ V)
115, 7, 9, 10syl3anc 1249 . 2 ((𝑊𝑋𝐴𝑌) → (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) ∈ V)
12 id 19 . . . 4 (𝑤 = 𝑊𝑤 = 𝑊)
13 fveq2 5561 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
1413ineq2d 3365 . . . . 5 (𝑤 = 𝑊 → (𝑥 ∩ (Base‘𝑤)) = (𝑥 ∩ (Base‘𝑊)))
1514opeq2d 3816 . . . 4 (𝑤 = 𝑊 → ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩ = ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑊))⟩)
1612, 15oveq12d 5943 . . 3 (𝑤 = 𝑊 → (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩) = (𝑊 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑊))⟩))
17 ineq1 3358 . . . . 5 (𝑥 = 𝐴 → (𝑥 ∩ (Base‘𝑊)) = (𝐴 ∩ (Base‘𝑊)))
1817opeq2d 3816 . . . 4 (𝑥 = 𝐴 → ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑊))⟩ = ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)
1918oveq2d 5941 . . 3 (𝑥 = 𝐴 → (𝑊 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑊))⟩) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
20 df-iress 12711 . . 3 s = (𝑤 ∈ V, 𝑥 ∈ V ↦ (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩))
2116, 19, 20ovmpog 6061 . 2 ((𝑊 ∈ V ∧ 𝐴 ∈ V ∧ (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) ∈ V) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
222, 4, 11, 21syl3anc 1249 1 ((𝑊𝑋𝐴𝑌) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  Vcvv 2763  cin 3156  cop 3626  cfv 5259  (class class class)co 5925  cn 9007  ndxcnx 12700   sSet csts 12701  Basecbs 12703  s cress 12704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-inn 9008  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711
This theorem is referenced by:  ressex  12768  ressval2  12769  ressbasd  12770  strressid  12774  ressval3d  12775  resseqnbasd  12776  ressinbasd  12777  ressressg  12778  mgpress  13563
  Copyright terms: Public domain W3C validator