| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressvalsets | GIF version | ||
| Description: Value of structure restriction. (Contributed by Jim Kingdon, 16-Jan-2025.) |
| Ref | Expression |
|---|---|
| ressvalsets | ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 | . . 3 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑊 ∈ V) |
| 3 | elex 2774 | . . 3 ⊢ (𝐴 ∈ 𝑌 → 𝐴 ∈ V) | |
| 4 | 3 | adantl 277 | . 2 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝐴 ∈ V) |
| 5 | simpl 109 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑊 ∈ 𝑋) | |
| 6 | basendxnn 12759 | . . . 4 ⊢ (Base‘ndx) ∈ ℕ | |
| 7 | 6 | a1i 9 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (Base‘ndx) ∈ ℕ) |
| 8 | inex1g 4170 | . . . 4 ⊢ (𝐴 ∈ 𝑌 → (𝐴 ∩ (Base‘𝑊)) ∈ V) | |
| 9 | 8 | adantl 277 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝐴 ∩ (Base‘𝑊)) ∈ V) |
| 10 | setsex 12735 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ (Base‘ndx) ∈ ℕ ∧ (𝐴 ∩ (Base‘𝑊)) ∈ V) → (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉) ∈ V) | |
| 11 | 5, 7, 9, 10 | syl3anc 1249 | . 2 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉) ∈ V) |
| 12 | id 19 | . . . 4 ⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) | |
| 13 | fveq2 5561 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
| 14 | 13 | ineq2d 3365 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑥 ∩ (Base‘𝑤)) = (𝑥 ∩ (Base‘𝑊))) |
| 15 | 14 | opeq2d 3816 | . . . 4 ⊢ (𝑤 = 𝑊 → 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉 = 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑊))〉) |
| 16 | 12, 15 | oveq12d 5943 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉) = (𝑊 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑊))〉)) |
| 17 | ineq1 3358 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ (Base‘𝑊)) = (𝐴 ∩ (Base‘𝑊))) | |
| 18 | 17 | opeq2d 3816 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑊))〉 = 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉) |
| 19 | 18 | oveq2d 5941 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑊 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑊))〉) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
| 20 | df-iress 12711 | . . 3 ⊢ ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉)) | |
| 21 | 16, 19, 20 | ovmpog 6061 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ V ∧ (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉) ∈ V) → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
| 22 | 2, 4, 11, 21 | syl3anc 1249 | 1 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∩ cin 3156 〈cop 3626 ‘cfv 5259 (class class class)co 5925 ℕcn 9007 ndxcnx 12700 sSet csts 12701 Basecbs 12703 ↾s cress 12704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-inn 9008 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-iress 12711 |
| This theorem is referenced by: ressex 12768 ressval2 12769 ressbasd 12770 strressid 12774 ressval3d 12775 resseqnbasd 12776 ressinbasd 12777 ressressg 12778 mgpress 13563 |
| Copyright terms: Public domain | W3C validator |