ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressvalsets GIF version

Theorem ressvalsets 12523
Description: Value of structure restriction. (Contributed by Jim Kingdon, 16-Jan-2025.)
Assertion
Ref Expression
ressvalsets ((π‘Š ∈ 𝑋 ∧ 𝐴 ∈ π‘Œ) β†’ (π‘Š β†Ύs 𝐴) = (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘Š))⟩))

Proof of Theorem ressvalsets
Dummy variables 𝑀 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2748 . . 3 (π‘Š ∈ 𝑋 β†’ π‘Š ∈ V)
21adantr 276 . 2 ((π‘Š ∈ 𝑋 ∧ 𝐴 ∈ π‘Œ) β†’ π‘Š ∈ V)
3 elex 2748 . . 3 (𝐴 ∈ π‘Œ β†’ 𝐴 ∈ V)
43adantl 277 . 2 ((π‘Š ∈ 𝑋 ∧ 𝐴 ∈ π‘Œ) β†’ 𝐴 ∈ V)
5 simpl 109 . . 3 ((π‘Š ∈ 𝑋 ∧ 𝐴 ∈ π‘Œ) β†’ π‘Š ∈ 𝑋)
6 basendxnn 12517 . . . 4 (Baseβ€˜ndx) ∈ β„•
76a1i 9 . . 3 ((π‘Š ∈ 𝑋 ∧ 𝐴 ∈ π‘Œ) β†’ (Baseβ€˜ndx) ∈ β„•)
8 inex1g 4139 . . . 4 (𝐴 ∈ π‘Œ β†’ (𝐴 ∩ (Baseβ€˜π‘Š)) ∈ V)
98adantl 277 . . 3 ((π‘Š ∈ 𝑋 ∧ 𝐴 ∈ π‘Œ) β†’ (𝐴 ∩ (Baseβ€˜π‘Š)) ∈ V)
10 setsex 12493 . . 3 ((π‘Š ∈ 𝑋 ∧ (Baseβ€˜ndx) ∈ β„• ∧ (𝐴 ∩ (Baseβ€˜π‘Š)) ∈ V) β†’ (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘Š))⟩) ∈ V)
115, 7, 9, 10syl3anc 1238 . 2 ((π‘Š ∈ 𝑋 ∧ 𝐴 ∈ π‘Œ) β†’ (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘Š))⟩) ∈ V)
12 id 19 . . . 4 (𝑀 = π‘Š β†’ 𝑀 = π‘Š)
13 fveq2 5515 . . . . . 6 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = (Baseβ€˜π‘Š))
1413ineq2d 3336 . . . . 5 (𝑀 = π‘Š β†’ (π‘₯ ∩ (Baseβ€˜π‘€)) = (π‘₯ ∩ (Baseβ€˜π‘Š)))
1514opeq2d 3785 . . . 4 (𝑀 = π‘Š β†’ ⟨(Baseβ€˜ndx), (π‘₯ ∩ (Baseβ€˜π‘€))⟩ = ⟨(Baseβ€˜ndx), (π‘₯ ∩ (Baseβ€˜π‘Š))⟩)
1612, 15oveq12d 5892 . . 3 (𝑀 = π‘Š β†’ (𝑀 sSet ⟨(Baseβ€˜ndx), (π‘₯ ∩ (Baseβ€˜π‘€))⟩) = (π‘Š sSet ⟨(Baseβ€˜ndx), (π‘₯ ∩ (Baseβ€˜π‘Š))⟩))
17 ineq1 3329 . . . . 5 (π‘₯ = 𝐴 β†’ (π‘₯ ∩ (Baseβ€˜π‘Š)) = (𝐴 ∩ (Baseβ€˜π‘Š)))
1817opeq2d 3785 . . . 4 (π‘₯ = 𝐴 β†’ ⟨(Baseβ€˜ndx), (π‘₯ ∩ (Baseβ€˜π‘Š))⟩ = ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘Š))⟩)
1918oveq2d 5890 . . 3 (π‘₯ = 𝐴 β†’ (π‘Š sSet ⟨(Baseβ€˜ndx), (π‘₯ ∩ (Baseβ€˜π‘Š))⟩) = (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘Š))⟩))
20 df-iress 12469 . . 3 β†Ύs = (𝑀 ∈ V, π‘₯ ∈ V ↦ (𝑀 sSet ⟨(Baseβ€˜ndx), (π‘₯ ∩ (Baseβ€˜π‘€))⟩))
2116, 19, 20ovmpog 6008 . 2 ((π‘Š ∈ V ∧ 𝐴 ∈ V ∧ (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘Š))⟩) ∈ V) β†’ (π‘Š β†Ύs 𝐴) = (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘Š))⟩))
222, 4, 11, 21syl3anc 1238 1 ((π‘Š ∈ 𝑋 ∧ 𝐴 ∈ π‘Œ) β†’ (π‘Š β†Ύs 𝐴) = (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘Š))⟩))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   = wceq 1353   ∈ wcel 2148  Vcvv 2737   ∩ cin 3128  βŸ¨cop 3595  β€˜cfv 5216  (class class class)co 5874  β„•cn 8918  ndxcnx 12458   sSet csts 12459  Basecbs 12461   β†Ύs cress 12462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1re 7904  ax-addrcl 7907
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-iota 5178  df-fun 5218  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-inn 8919  df-ndx 12464  df-slot 12465  df-base 12467  df-sets 12468  df-iress 12469
This theorem is referenced by:  ressex  12524  ressval2  12525  ressbasd  12526  strressid  12529  ressval3d  12530  resseqnbasd  12531  ressinbasd  12532  ressressg  12533  mgpress  13139
  Copyright terms: Public domain W3C validator