Step | Hyp | Ref
| Expression |
1 | | elex 2748 |
. . 3
β’ (π β π β π β V) |
2 | 1 | adantr 276 |
. 2
β’ ((π β π β§ π΄ β π) β π β V) |
3 | | elex 2748 |
. . 3
β’ (π΄ β π β π΄ β V) |
4 | 3 | adantl 277 |
. 2
β’ ((π β π β§ π΄ β π) β π΄ β V) |
5 | | simpl 109 |
. . 3
β’ ((π β π β§ π΄ β π) β π β π) |
6 | | basendxnn 12517 |
. . . 4
β’
(Baseβndx) β β |
7 | 6 | a1i 9 |
. . 3
β’ ((π β π β§ π΄ β π) β (Baseβndx) β
β) |
8 | | inex1g 4139 |
. . . 4
β’ (π΄ β π β (π΄ β© (Baseβπ)) β V) |
9 | 8 | adantl 277 |
. . 3
β’ ((π β π β§ π΄ β π) β (π΄ β© (Baseβπ)) β V) |
10 | | setsex 12493 |
. . 3
β’ ((π β π β§ (Baseβndx) β β β§
(π΄ β© (Baseβπ)) β V) β (π sSet β¨(Baseβndx),
(π΄ β© (Baseβπ))β©) β
V) |
11 | 5, 7, 9, 10 | syl3anc 1238 |
. 2
β’ ((π β π β§ π΄ β π) β (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©) β
V) |
12 | | id 19 |
. . . 4
β’ (π€ = π β π€ = π) |
13 | | fveq2 5515 |
. . . . . 6
β’ (π€ = π β (Baseβπ€) = (Baseβπ)) |
14 | 13 | ineq2d 3336 |
. . . . 5
β’ (π€ = π β (π₯ β© (Baseβπ€)) = (π₯ β© (Baseβπ))) |
15 | 14 | opeq2d 3785 |
. . . 4
β’ (π€ = π β β¨(Baseβndx), (π₯ β© (Baseβπ€))β© =
β¨(Baseβndx), (π₯
β© (Baseβπ))β©) |
16 | 12, 15 | oveq12d 5892 |
. . 3
β’ (π€ = π β (π€ sSet β¨(Baseβndx), (π₯ β© (Baseβπ€))β©) = (π sSet β¨(Baseβndx), (π₯ β© (Baseβπ))β©)) |
17 | | ineq1 3329 |
. . . . 5
β’ (π₯ = π΄ β (π₯ β© (Baseβπ)) = (π΄ β© (Baseβπ))) |
18 | 17 | opeq2d 3785 |
. . . 4
β’ (π₯ = π΄ β β¨(Baseβndx), (π₯ β© (Baseβπ))β© =
β¨(Baseβndx), (π΄
β© (Baseβπ))β©) |
19 | 18 | oveq2d 5890 |
. . 3
β’ (π₯ = π΄ β (π sSet β¨(Baseβndx), (π₯ β© (Baseβπ))β©) = (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©)) |
20 | | df-iress 12469 |
. . 3
β’
βΎs = (π€
β V, π₯ β V
β¦ (π€ sSet
β¨(Baseβndx), (π₯
β© (Baseβπ€))β©)) |
21 | 16, 19, 20 | ovmpog 6008 |
. 2
β’ ((π β V β§ π΄ β V β§ (π sSet β¨(Baseβndx),
(π΄ β© (Baseβπ))β©) β V) β
(π βΎs
π΄) = (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©)) |
22 | 2, 4, 11, 21 | syl3anc 1238 |
1
β’ ((π β π β§ π΄ β π) β (π βΎs π΄) = (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©)) |