![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ressvalsets | GIF version |
Description: Value of structure restriction. (Contributed by Jim Kingdon, 16-Jan-2025.) |
Ref | Expression |
---|---|
ressvalsets | ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2771 | . . 3 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
2 | 1 | adantr 276 | . 2 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑊 ∈ V) |
3 | elex 2771 | . . 3 ⊢ (𝐴 ∈ 𝑌 → 𝐴 ∈ V) | |
4 | 3 | adantl 277 | . 2 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝐴 ∈ V) |
5 | simpl 109 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑊 ∈ 𝑋) | |
6 | basendxnn 12677 | . . . 4 ⊢ (Base‘ndx) ∈ ℕ | |
7 | 6 | a1i 9 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (Base‘ndx) ∈ ℕ) |
8 | inex1g 4166 | . . . 4 ⊢ (𝐴 ∈ 𝑌 → (𝐴 ∩ (Base‘𝑊)) ∈ V) | |
9 | 8 | adantl 277 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝐴 ∩ (Base‘𝑊)) ∈ V) |
10 | setsex 12653 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ (Base‘ndx) ∈ ℕ ∧ (𝐴 ∩ (Base‘𝑊)) ∈ V) → (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉) ∈ V) | |
11 | 5, 7, 9, 10 | syl3anc 1249 | . 2 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉) ∈ V) |
12 | id 19 | . . . 4 ⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) | |
13 | fveq2 5555 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
14 | 13 | ineq2d 3361 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑥 ∩ (Base‘𝑤)) = (𝑥 ∩ (Base‘𝑊))) |
15 | 14 | opeq2d 3812 | . . . 4 ⊢ (𝑤 = 𝑊 → 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉 = 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑊))〉) |
16 | 12, 15 | oveq12d 5937 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉) = (𝑊 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑊))〉)) |
17 | ineq1 3354 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ (Base‘𝑊)) = (𝐴 ∩ (Base‘𝑊))) | |
18 | 17 | opeq2d 3812 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑊))〉 = 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉) |
19 | 18 | oveq2d 5935 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑊 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑊))〉) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
20 | df-iress 12629 | . . 3 ⊢ ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉)) | |
21 | 16, 19, 20 | ovmpog 6054 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ V ∧ (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉) ∈ V) → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
22 | 2, 4, 11, 21 | syl3anc 1249 | 1 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∩ cin 3153 〈cop 3622 ‘cfv 5255 (class class class)co 5919 ℕcn 8984 ndxcnx 12618 sSet csts 12619 Basecbs 12621 ↾s cress 12622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-iota 5216 df-fun 5257 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-inn 8985 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-iress 12629 |
This theorem is referenced by: ressex 12686 ressval2 12687 ressbasd 12688 strressid 12692 ressval3d 12693 resseqnbasd 12694 ressinbasd 12695 ressressg 12696 mgpress 13430 |
Copyright terms: Public domain | W3C validator |