ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressvalsets GIF version

Theorem ressvalsets 12537
Description: Value of structure restriction. (Contributed by Jim Kingdon, 16-Jan-2025.)
Assertion
Ref Expression
ressvalsets ((π‘Š ∈ 𝑋 ∧ 𝐴 ∈ π‘Œ) β†’ (π‘Š β†Ύs 𝐴) = (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘Š))⟩))

Proof of Theorem ressvalsets
Dummy variables 𝑀 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2760 . . 3 (π‘Š ∈ 𝑋 β†’ π‘Š ∈ V)
21adantr 276 . 2 ((π‘Š ∈ 𝑋 ∧ 𝐴 ∈ π‘Œ) β†’ π‘Š ∈ V)
3 elex 2760 . . 3 (𝐴 ∈ π‘Œ β†’ 𝐴 ∈ V)
43adantl 277 . 2 ((π‘Š ∈ 𝑋 ∧ 𝐴 ∈ π‘Œ) β†’ 𝐴 ∈ V)
5 simpl 109 . . 3 ((π‘Š ∈ 𝑋 ∧ 𝐴 ∈ π‘Œ) β†’ π‘Š ∈ 𝑋)
6 basendxnn 12531 . . . 4 (Baseβ€˜ndx) ∈ β„•
76a1i 9 . . 3 ((π‘Š ∈ 𝑋 ∧ 𝐴 ∈ π‘Œ) β†’ (Baseβ€˜ndx) ∈ β„•)
8 inex1g 4151 . . . 4 (𝐴 ∈ π‘Œ β†’ (𝐴 ∩ (Baseβ€˜π‘Š)) ∈ V)
98adantl 277 . . 3 ((π‘Š ∈ 𝑋 ∧ 𝐴 ∈ π‘Œ) β†’ (𝐴 ∩ (Baseβ€˜π‘Š)) ∈ V)
10 setsex 12507 . . 3 ((π‘Š ∈ 𝑋 ∧ (Baseβ€˜ndx) ∈ β„• ∧ (𝐴 ∩ (Baseβ€˜π‘Š)) ∈ V) β†’ (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘Š))⟩) ∈ V)
115, 7, 9, 10syl3anc 1248 . 2 ((π‘Š ∈ 𝑋 ∧ 𝐴 ∈ π‘Œ) β†’ (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘Š))⟩) ∈ V)
12 id 19 . . . 4 (𝑀 = π‘Š β†’ 𝑀 = π‘Š)
13 fveq2 5527 . . . . . 6 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = (Baseβ€˜π‘Š))
1413ineq2d 3348 . . . . 5 (𝑀 = π‘Š β†’ (π‘₯ ∩ (Baseβ€˜π‘€)) = (π‘₯ ∩ (Baseβ€˜π‘Š)))
1514opeq2d 3797 . . . 4 (𝑀 = π‘Š β†’ ⟨(Baseβ€˜ndx), (π‘₯ ∩ (Baseβ€˜π‘€))⟩ = ⟨(Baseβ€˜ndx), (π‘₯ ∩ (Baseβ€˜π‘Š))⟩)
1612, 15oveq12d 5906 . . 3 (𝑀 = π‘Š β†’ (𝑀 sSet ⟨(Baseβ€˜ndx), (π‘₯ ∩ (Baseβ€˜π‘€))⟩) = (π‘Š sSet ⟨(Baseβ€˜ndx), (π‘₯ ∩ (Baseβ€˜π‘Š))⟩))
17 ineq1 3341 . . . . 5 (π‘₯ = 𝐴 β†’ (π‘₯ ∩ (Baseβ€˜π‘Š)) = (𝐴 ∩ (Baseβ€˜π‘Š)))
1817opeq2d 3797 . . . 4 (π‘₯ = 𝐴 β†’ ⟨(Baseβ€˜ndx), (π‘₯ ∩ (Baseβ€˜π‘Š))⟩ = ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘Š))⟩)
1918oveq2d 5904 . . 3 (π‘₯ = 𝐴 β†’ (π‘Š sSet ⟨(Baseβ€˜ndx), (π‘₯ ∩ (Baseβ€˜π‘Š))⟩) = (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘Š))⟩))
20 df-iress 12483 . . 3 β†Ύs = (𝑀 ∈ V, π‘₯ ∈ V ↦ (𝑀 sSet ⟨(Baseβ€˜ndx), (π‘₯ ∩ (Baseβ€˜π‘€))⟩))
2116, 19, 20ovmpog 6022 . 2 ((π‘Š ∈ V ∧ 𝐴 ∈ V ∧ (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘Š))⟩) ∈ V) β†’ (π‘Š β†Ύs 𝐴) = (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘Š))⟩))
222, 4, 11, 21syl3anc 1248 1 ((π‘Š ∈ 𝑋 ∧ 𝐴 ∈ π‘Œ) β†’ (π‘Š β†Ύs 𝐴) = (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘Š))⟩))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   = wceq 1363   ∈ wcel 2158  Vcvv 2749   ∩ cin 3140  βŸ¨cop 3607  β€˜cfv 5228  (class class class)co 5888  β„•cn 8932  ndxcnx 12472   sSet csts 12473  Basecbs 12475   β†Ύs cress 12476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1re 7918  ax-addrcl 7921
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-iota 5190  df-fun 5230  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-inn 8933  df-ndx 12478  df-slot 12479  df-base 12481  df-sets 12482  df-iress 12483
This theorem is referenced by:  ressex  12538  ressval2  12539  ressbasd  12540  strressid  12544  ressval3d  12545  resseqnbasd  12546  ressinbasd  12547  ressressg  12548  mgpress  13173
  Copyright terms: Public domain W3C validator