ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-lgs GIF version

Definition df-lgs 15239
Description: Define the Legendre symbol (actually the Kronecker symbol, which extends the Legendre symbol to all integers, and also the Jacobi symbol, which restricts the Kronecker symbol to positive odd integers). See definition in [ApostolNT] p. 179 resp. definition in [ApostolNT] p. 188. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
df-lgs /L = (𝑎 ∈ ℤ, 𝑛 ∈ ℤ ↦ if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛)))))
Distinct variable group:   𝑚,𝑎,𝑛

Detailed syntax breakdown of Definition df-lgs
StepHypRef Expression
1 clgs 15238 . 2 class /L
2 va . . 3 setvar 𝑎
3 vn . . 3 setvar 𝑛
4 cz 9326 . . 3 class
53cv 1363 . . . . 5 class 𝑛
6 cc0 7879 . . . . 5 class 0
75, 6wceq 1364 . . . 4 wff 𝑛 = 0
82cv 1363 . . . . . . 7 class 𝑎
9 c2 9041 . . . . . . 7 class 2
10 cexp 10630 . . . . . . 7 class
118, 9, 10co 5922 . . . . . 6 class (𝑎↑2)
12 c1 7880 . . . . . 6 class 1
1311, 12wceq 1364 . . . . 5 wff (𝑎↑2) = 1
1413, 12, 6cif 3561 . . . 4 class if((𝑎↑2) = 1, 1, 0)
15 clt 8061 . . . . . . . 8 class <
165, 6, 15wbr 4033 . . . . . . 7 wff 𝑛 < 0
178, 6, 15wbr 4033 . . . . . . 7 wff 𝑎 < 0
1816, 17wa 104 . . . . . 6 wff (𝑛 < 0 ∧ 𝑎 < 0)
1912cneg 8198 . . . . . 6 class -1
2018, 19, 12cif 3561 . . . . 5 class if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1)
21 cabs 11162 . . . . . . 7 class abs
225, 21cfv 5258 . . . . . 6 class (abs‘𝑛)
23 cmul 7884 . . . . . . 7 class ·
24 vm . . . . . . . 8 setvar 𝑚
25 cn 8990 . . . . . . . 8 class
2624cv 1363 . . . . . . . . . 10 class 𝑚
27 cprime 12275 . . . . . . . . . 10 class
2826, 27wcel 2167 . . . . . . . . 9 wff 𝑚 ∈ ℙ
2926, 9wceq 1364 . . . . . . . . . . 11 wff 𝑚 = 2
30 cdvds 11952 . . . . . . . . . . . . 13 class
319, 8, 30wbr 4033 . . . . . . . . . . . 12 wff 2 ∥ 𝑎
32 c8 9047 . . . . . . . . . . . . . . 15 class 8
33 cmo 10414 . . . . . . . . . . . . . . 15 class mod
348, 32, 33co 5922 . . . . . . . . . . . . . 14 class (𝑎 mod 8)
35 c7 9046 . . . . . . . . . . . . . . 15 class 7
3612, 35cpr 3623 . . . . . . . . . . . . . 14 class {1, 7}
3734, 36wcel 2167 . . . . . . . . . . . . 13 wff (𝑎 mod 8) ∈ {1, 7}
3837, 12, 19cif 3561 . . . . . . . . . . . 12 class if((𝑎 mod 8) ∈ {1, 7}, 1, -1)
3931, 6, 38cif 3561 . . . . . . . . . . 11 class if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1))
40 cmin 8197 . . . . . . . . . . . . . . . . 17 class
4126, 12, 40co 5922 . . . . . . . . . . . . . . . 16 class (𝑚 − 1)
42 cdiv 8699 . . . . . . . . . . . . . . . 16 class /
4341, 9, 42co 5922 . . . . . . . . . . . . . . 15 class ((𝑚 − 1) / 2)
448, 43, 10co 5922 . . . . . . . . . . . . . 14 class (𝑎↑((𝑚 − 1) / 2))
45 caddc 7882 . . . . . . . . . . . . . 14 class +
4644, 12, 45co 5922 . . . . . . . . . . . . 13 class ((𝑎↑((𝑚 − 1) / 2)) + 1)
4746, 26, 33co 5922 . . . . . . . . . . . 12 class (((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚)
4847, 12, 40co 5922 . . . . . . . . . . 11 class ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1)
4929, 39, 48cif 3561 . . . . . . . . . 10 class if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))
50 cpc 12453 . . . . . . . . . . 11 class pCnt
5126, 5, 50co 5922 . . . . . . . . . 10 class (𝑚 pCnt 𝑛)
5249, 51, 10co 5922 . . . . . . . . 9 class (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛))
5328, 52, 12cif 3561 . . . . . . . 8 class if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)
5424, 25, 53cmpt 4094 . . . . . . 7 class (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1))
5523, 54, 12cseq 10539 . . . . . 6 class seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))
5622, 55cfv 5258 . . . . 5 class (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛))
5720, 56, 23co 5922 . . . 4 class (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛)))
587, 14, 57cif 3561 . . 3 class if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛))))
592, 3, 4, 4, 58cmpo 5924 . 2 class (𝑎 ∈ ℤ, 𝑛 ∈ ℤ ↦ if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛)))))
601, 59wceq 1364 1 wff /L = (𝑎 ∈ ℤ, 𝑛 ∈ ℤ ↦ if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛)))))
Colors of variables: wff set class
This definition is referenced by:  lgsval  15245
  Copyright terms: Public domain W3C validator