ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-lgs GIF version

Definition df-lgs 15323
Description: Define the Legendre symbol (actually the Kronecker symbol, which extends the Legendre symbol to all integers, and also the Jacobi symbol, which restricts the Kronecker symbol to positive odd integers). See definition in [ApostolNT] p. 179 resp. definition in [ApostolNT] p. 188. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
df-lgs /L = (𝑎 ∈ ℤ, 𝑛 ∈ ℤ ↦ if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛)))))
Distinct variable group:   𝑚,𝑎,𝑛

Detailed syntax breakdown of Definition df-lgs
StepHypRef Expression
1 clgs 15322 . 2 class /L
2 va . . 3 setvar 𝑎
3 vn . . 3 setvar 𝑛
4 cz 9343 . . 3 class
53cv 1363 . . . . 5 class 𝑛
6 cc0 7896 . . . . 5 class 0
75, 6wceq 1364 . . . 4 wff 𝑛 = 0
82cv 1363 . . . . . . 7 class 𝑎
9 c2 9058 . . . . . . 7 class 2
10 cexp 10647 . . . . . . 7 class
118, 9, 10co 5925 . . . . . 6 class (𝑎↑2)
12 c1 7897 . . . . . 6 class 1
1311, 12wceq 1364 . . . . 5 wff (𝑎↑2) = 1
1413, 12, 6cif 3562 . . . 4 class if((𝑎↑2) = 1, 1, 0)
15 clt 8078 . . . . . . . 8 class <
165, 6, 15wbr 4034 . . . . . . 7 wff 𝑛 < 0
178, 6, 15wbr 4034 . . . . . . 7 wff 𝑎 < 0
1816, 17wa 104 . . . . . 6 wff (𝑛 < 0 ∧ 𝑎 < 0)
1912cneg 8215 . . . . . 6 class -1
2018, 19, 12cif 3562 . . . . 5 class if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1)
21 cabs 11179 . . . . . . 7 class abs
225, 21cfv 5259 . . . . . 6 class (abs‘𝑛)
23 cmul 7901 . . . . . . 7 class ·
24 vm . . . . . . . 8 setvar 𝑚
25 cn 9007 . . . . . . . 8 class
2624cv 1363 . . . . . . . . . 10 class 𝑚
27 cprime 12300 . . . . . . . . . 10 class
2826, 27wcel 2167 . . . . . . . . 9 wff 𝑚 ∈ ℙ
2926, 9wceq 1364 . . . . . . . . . . 11 wff 𝑚 = 2
30 cdvds 11969 . . . . . . . . . . . . 13 class
319, 8, 30wbr 4034 . . . . . . . . . . . 12 wff 2 ∥ 𝑎
32 c8 9064 . . . . . . . . . . . . . . 15 class 8
33 cmo 10431 . . . . . . . . . . . . . . 15 class mod
348, 32, 33co 5925 . . . . . . . . . . . . . 14 class (𝑎 mod 8)
35 c7 9063 . . . . . . . . . . . . . . 15 class 7
3612, 35cpr 3624 . . . . . . . . . . . . . 14 class {1, 7}
3734, 36wcel 2167 . . . . . . . . . . . . 13 wff (𝑎 mod 8) ∈ {1, 7}
3837, 12, 19cif 3562 . . . . . . . . . . . 12 class if((𝑎 mod 8) ∈ {1, 7}, 1, -1)
3931, 6, 38cif 3562 . . . . . . . . . . 11 class if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1))
40 cmin 8214 . . . . . . . . . . . . . . . . 17 class
4126, 12, 40co 5925 . . . . . . . . . . . . . . . 16 class (𝑚 − 1)
42 cdiv 8716 . . . . . . . . . . . . . . . 16 class /
4341, 9, 42co 5925 . . . . . . . . . . . . . . 15 class ((𝑚 − 1) / 2)
448, 43, 10co 5925 . . . . . . . . . . . . . 14 class (𝑎↑((𝑚 − 1) / 2))
45 caddc 7899 . . . . . . . . . . . . . 14 class +
4644, 12, 45co 5925 . . . . . . . . . . . . 13 class ((𝑎↑((𝑚 − 1) / 2)) + 1)
4746, 26, 33co 5925 . . . . . . . . . . . 12 class (((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚)
4847, 12, 40co 5925 . . . . . . . . . . 11 class ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1)
4929, 39, 48cif 3562 . . . . . . . . . 10 class if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))
50 cpc 12478 . . . . . . . . . . 11 class pCnt
5126, 5, 50co 5925 . . . . . . . . . 10 class (𝑚 pCnt 𝑛)
5249, 51, 10co 5925 . . . . . . . . 9 class (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛))
5328, 52, 12cif 3562 . . . . . . . 8 class if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)
5424, 25, 53cmpt 4095 . . . . . . 7 class (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1))
5523, 54, 12cseq 10556 . . . . . 6 class seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))
5622, 55cfv 5259 . . . . 5 class (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛))
5720, 56, 23co 5925 . . . 4 class (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛)))
587, 14, 57cif 3562 . . 3 class if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛))))
592, 3, 4, 4, 58cmpo 5927 . 2 class (𝑎 ∈ ℤ, 𝑛 ∈ ℤ ↦ if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛)))))
601, 59wceq 1364 1 wff /L = (𝑎 ∈ ℤ, 𝑛 ∈ ℤ ↦ if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛)))))
Colors of variables: wff set class
This definition is referenced by:  lgsval  15329
  Copyright terms: Public domain W3C validator