ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-lgs GIF version

Definition df-lgs 15550
Description: Define the Legendre symbol (actually the Kronecker symbol, which extends the Legendre symbol to all integers, and also the Jacobi symbol, which restricts the Kronecker symbol to positive odd integers). See definition in [ApostolNT] p. 179 resp. definition in [ApostolNT] p. 188. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
df-lgs /L = (𝑎 ∈ ℤ, 𝑛 ∈ ℤ ↦ if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛)))))
Distinct variable group:   𝑚,𝑎,𝑛

Detailed syntax breakdown of Definition df-lgs
StepHypRef Expression
1 clgs 15549 . 2 class /L
2 va . . 3 setvar 𝑎
3 vn . . 3 setvar 𝑛
4 cz 9392 . . 3 class
53cv 1372 . . . . 5 class 𝑛
6 cc0 7945 . . . . 5 class 0
75, 6wceq 1373 . . . 4 wff 𝑛 = 0
82cv 1372 . . . . . . 7 class 𝑎
9 c2 9107 . . . . . . 7 class 2
10 cexp 10705 . . . . . . 7 class
118, 9, 10co 5957 . . . . . 6 class (𝑎↑2)
12 c1 7946 . . . . . 6 class 1
1311, 12wceq 1373 . . . . 5 wff (𝑎↑2) = 1
1413, 12, 6cif 3575 . . . 4 class if((𝑎↑2) = 1, 1, 0)
15 clt 8127 . . . . . . . 8 class <
165, 6, 15wbr 4051 . . . . . . 7 wff 𝑛 < 0
178, 6, 15wbr 4051 . . . . . . 7 wff 𝑎 < 0
1816, 17wa 104 . . . . . 6 wff (𝑛 < 0 ∧ 𝑎 < 0)
1912cneg 8264 . . . . . 6 class -1
2018, 19, 12cif 3575 . . . . 5 class if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1)
21 cabs 11383 . . . . . . 7 class abs
225, 21cfv 5280 . . . . . 6 class (abs‘𝑛)
23 cmul 7950 . . . . . . 7 class ·
24 vm . . . . . . . 8 setvar 𝑚
25 cn 9056 . . . . . . . 8 class
2624cv 1372 . . . . . . . . . 10 class 𝑚
27 cprime 12504 . . . . . . . . . 10 class
2826, 27wcel 2177 . . . . . . . . 9 wff 𝑚 ∈ ℙ
2926, 9wceq 1373 . . . . . . . . . . 11 wff 𝑚 = 2
30 cdvds 12173 . . . . . . . . . . . . 13 class
319, 8, 30wbr 4051 . . . . . . . . . . . 12 wff 2 ∥ 𝑎
32 c8 9113 . . . . . . . . . . . . . . 15 class 8
33 cmo 10489 . . . . . . . . . . . . . . 15 class mod
348, 32, 33co 5957 . . . . . . . . . . . . . 14 class (𝑎 mod 8)
35 c7 9112 . . . . . . . . . . . . . . 15 class 7
3612, 35cpr 3639 . . . . . . . . . . . . . 14 class {1, 7}
3734, 36wcel 2177 . . . . . . . . . . . . 13 wff (𝑎 mod 8) ∈ {1, 7}
3837, 12, 19cif 3575 . . . . . . . . . . . 12 class if((𝑎 mod 8) ∈ {1, 7}, 1, -1)
3931, 6, 38cif 3575 . . . . . . . . . . 11 class if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1))
40 cmin 8263 . . . . . . . . . . . . . . . . 17 class
4126, 12, 40co 5957 . . . . . . . . . . . . . . . 16 class (𝑚 − 1)
42 cdiv 8765 . . . . . . . . . . . . . . . 16 class /
4341, 9, 42co 5957 . . . . . . . . . . . . . . 15 class ((𝑚 − 1) / 2)
448, 43, 10co 5957 . . . . . . . . . . . . . 14 class (𝑎↑((𝑚 − 1) / 2))
45 caddc 7948 . . . . . . . . . . . . . 14 class +
4644, 12, 45co 5957 . . . . . . . . . . . . 13 class ((𝑎↑((𝑚 − 1) / 2)) + 1)
4746, 26, 33co 5957 . . . . . . . . . . . 12 class (((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚)
4847, 12, 40co 5957 . . . . . . . . . . 11 class ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1)
4929, 39, 48cif 3575 . . . . . . . . . 10 class if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))
50 cpc 12682 . . . . . . . . . . 11 class pCnt
5126, 5, 50co 5957 . . . . . . . . . 10 class (𝑚 pCnt 𝑛)
5249, 51, 10co 5957 . . . . . . . . 9 class (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛))
5328, 52, 12cif 3575 . . . . . . . 8 class if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)
5424, 25, 53cmpt 4113 . . . . . . 7 class (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1))
5523, 54, 12cseq 10614 . . . . . 6 class seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))
5622, 55cfv 5280 . . . . 5 class (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛))
5720, 56, 23co 5957 . . . 4 class (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛)))
587, 14, 57cif 3575 . . 3 class if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛))))
592, 3, 4, 4, 58cmpo 5959 . 2 class (𝑎 ∈ ℤ, 𝑛 ∈ ℤ ↦ if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛)))))
601, 59wceq 1373 1 wff /L = (𝑎 ∈ ℤ, 𝑛 ∈ ℤ ↦ if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛)))))
Colors of variables: wff set class
This definition is referenced by:  lgsval  15556
  Copyright terms: Public domain W3C validator