Detailed syntax breakdown of Definition df-lgs
Step | Hyp | Ref
| Expression |
1 | | clgs 13498 |
. 2
class
/L |
2 | | va |
. . 3
setvar 𝑎 |
3 | | vn |
. . 3
setvar 𝑛 |
4 | | cz 9187 |
. . 3
class
ℤ |
5 | 3 | cv 1342 |
. . . . 5
class 𝑛 |
6 | | cc0 7749 |
. . . . 5
class
0 |
7 | 5, 6 | wceq 1343 |
. . . 4
wff 𝑛 = 0 |
8 | 2 | cv 1342 |
. . . . . . 7
class 𝑎 |
9 | | c2 8904 |
. . . . . . 7
class
2 |
10 | | cexp 10450 |
. . . . . . 7
class
↑ |
11 | 8, 9, 10 | co 5841 |
. . . . . 6
class (𝑎↑2) |
12 | | c1 7750 |
. . . . . 6
class
1 |
13 | 11, 12 | wceq 1343 |
. . . . 5
wff (𝑎↑2) = 1 |
14 | 13, 12, 6 | cif 3519 |
. . . 4
class if((𝑎↑2) = 1, 1,
0) |
15 | | clt 7929 |
. . . . . . . 8
class
< |
16 | 5, 6, 15 | wbr 3981 |
. . . . . . 7
wff 𝑛 < 0 |
17 | 8, 6, 15 | wbr 3981 |
. . . . . . 7
wff 𝑎 < 0 |
18 | 16, 17 | wa 103 |
. . . . . 6
wff (𝑛 < 0 ∧ 𝑎 < 0) |
19 | 12 | cneg 8066 |
. . . . . 6
class
-1 |
20 | 18, 19, 12 | cif 3519 |
. . . . 5
class if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) |
21 | | cabs 10935 |
. . . . . . 7
class
abs |
22 | 5, 21 | cfv 5187 |
. . . . . 6
class
(abs‘𝑛) |
23 | | cmul 7754 |
. . . . . . 7
class
· |
24 | | vm |
. . . . . . . 8
setvar 𝑚 |
25 | | cn 8853 |
. . . . . . . 8
class
ℕ |
26 | 24 | cv 1342 |
. . . . . . . . . 10
class 𝑚 |
27 | | cprime 12035 |
. . . . . . . . . 10
class
ℙ |
28 | 26, 27 | wcel 2136 |
. . . . . . . . 9
wff 𝑚 ∈ ℙ |
29 | 26, 9 | wceq 1343 |
. . . . . . . . . . 11
wff 𝑚 = 2 |
30 | | cdvds 11723 |
. . . . . . . . . . . . 13
class
∥ |
31 | 9, 8, 30 | wbr 3981 |
. . . . . . . . . . . 12
wff 2 ∥
𝑎 |
32 | | c8 8910 |
. . . . . . . . . . . . . . 15
class
8 |
33 | | cmo 10253 |
. . . . . . . . . . . . . . 15
class
mod |
34 | 8, 32, 33 | co 5841 |
. . . . . . . . . . . . . 14
class (𝑎 mod 8) |
35 | | c7 8909 |
. . . . . . . . . . . . . . 15
class
7 |
36 | 12, 35 | cpr 3576 |
. . . . . . . . . . . . . 14
class {1,
7} |
37 | 34, 36 | wcel 2136 |
. . . . . . . . . . . . 13
wff (𝑎 mod 8) ∈ {1,
7} |
38 | 37, 12, 19 | cif 3519 |
. . . . . . . . . . . 12
class if((𝑎 mod 8) ∈ {1, 7}, 1,
-1) |
39 | 31, 6, 38 | cif 3519 |
. . . . . . . . . . 11
class if(2
∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1,
-1)) |
40 | | cmin 8065 |
. . . . . . . . . . . . . . . . 17
class
− |
41 | 26, 12, 40 | co 5841 |
. . . . . . . . . . . . . . . 16
class (𝑚 − 1) |
42 | | cdiv 8564 |
. . . . . . . . . . . . . . . 16
class
/ |
43 | 41, 9, 42 | co 5841 |
. . . . . . . . . . . . . . 15
class ((𝑚 − 1) /
2) |
44 | 8, 43, 10 | co 5841 |
. . . . . . . . . . . . . 14
class (𝑎↑((𝑚 − 1) / 2)) |
45 | | caddc 7752 |
. . . . . . . . . . . . . 14
class
+ |
46 | 44, 12, 45 | co 5841 |
. . . . . . . . . . . . 13
class ((𝑎↑((𝑚 − 1) / 2)) + 1) |
47 | 46, 26, 33 | co 5841 |
. . . . . . . . . . . 12
class (((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) |
48 | 47, 12, 40 | co 5841 |
. . . . . . . . . . 11
class ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1) |
49 | 29, 39, 48 | cif 3519 |
. . . . . . . . . 10
class if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1)) |
50 | | cpc 12212 |
. . . . . . . . . . 11
class
pCnt |
51 | 26, 5, 50 | co 5841 |
. . . . . . . . . 10
class (𝑚 pCnt 𝑛) |
52 | 49, 51, 10 | co 5841 |
. . . . . . . . 9
class (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)) |
53 | 28, 52, 12 | cif 3519 |
. . . . . . . 8
class if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1) |
54 | 24, 25, 53 | cmpt 4042 |
. . . . . . 7
class (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)) |
55 | 23, 54, 12 | cseq 10376 |
. . . . . 6
class seq1(
· , (𝑚 ∈
ℕ ↦ if(𝑚 ∈
ℙ, (if(𝑚 = 2, if(2
∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)),
((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1))) |
56 | 22, 55 | cfv 5187 |
. . . . 5
class (seq1(
· , (𝑚 ∈
ℕ ↦ if(𝑚 ∈
ℙ, (if(𝑚 = 2, if(2
∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)),
((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛)) |
57 | 20, 56, 23 | co 5841 |
. . . 4
class
(if((𝑛 < 0 ∧
𝑎 < 0), -1, 1) ·
(seq1( · , (𝑚 ∈
ℕ ↦ if(𝑚 ∈
ℙ, (if(𝑚 = 2, if(2
∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)),
((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛))) |
58 | 7, 14, 57 | cif 3519 |
. . 3
class if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · ,
(𝑚 ∈ ℕ ↦
if(𝑚 ∈ ℙ,
(if(𝑚 = 2, if(2 ∥
𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)),
((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛)))) |
59 | 2, 3, 4, 4, 58 | cmpo 5843 |
. 2
class (𝑎 ∈ ℤ, 𝑛 ∈ ℤ ↦ if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · ,
(𝑚 ∈ ℕ ↦
if(𝑚 ∈ ℙ,
(if(𝑚 = 2, if(2 ∥
𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)),
((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛))))) |
60 | 1, 59 | wceq 1343 |
1
wff
/L = (𝑎
∈ ℤ, 𝑛 ∈
ℤ ↦ if(𝑛 = 0,
if((𝑎↑2) = 1, 1, 0),
(if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1(
· , (𝑚 ∈
ℕ ↦ if(𝑚 ∈
ℙ, (if(𝑚 = 2, if(2
∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)),
((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛))))) |