ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-lgs Unicode version

Definition df-lgs 15347
Description: Define the Legendre symbol (actually the Kronecker symbol, which extends the Legendre symbol to all integers, and also the Jacobi symbol, which restricts the Kronecker symbol to positive odd integers). See definition in [ApostolNT] p. 179 resp. definition in [ApostolNT] p. 188. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
df-lgs  |-  /L 
=  ( a  e.  ZZ ,  n  e.  ZZ  |->  if ( n  =  0 ,  if ( ( a ^
2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) ) ) )
Distinct variable group:    m, a, n

Detailed syntax breakdown of Definition df-lgs
StepHypRef Expression
1 clgs 15346 . 2  class  /L
2 va . . 3  setvar  a
3 vn . . 3  setvar  n
4 cz 9345 . . 3  class  ZZ
53cv 1363 . . . . 5  class  n
6 cc0 7898 . . . . 5  class  0
75, 6wceq 1364 . . . 4  wff  n  =  0
82cv 1363 . . . . . . 7  class  a
9 c2 9060 . . . . . . 7  class  2
10 cexp 10649 . . . . . . 7  class  ^
118, 9, 10co 5925 . . . . . 6  class  ( a ^ 2 )
12 c1 7899 . . . . . 6  class  1
1311, 12wceq 1364 . . . . 5  wff  ( a ^ 2 )  =  1
1413, 12, 6cif 3562 . . . 4  class  if ( ( a ^ 2 )  =  1 ,  1 ,  0 )
15 clt 8080 . . . . . . . 8  class  <
165, 6, 15wbr 4034 . . . . . . 7  wff  n  <  0
178, 6, 15wbr 4034 . . . . . . 7  wff  a  <  0
1816, 17wa 104 . . . . . 6  wff  ( n  <  0  /\  a  <  0 )
1912cneg 8217 . . . . . 6  class  -u 1
2018, 19, 12cif 3562 . . . . 5  class  if ( ( n  <  0  /\  a  <  0
) ,  -u 1 ,  1 )
21 cabs 11181 . . . . . . 7  class  abs
225, 21cfv 5259 . . . . . 6  class  ( abs `  n )
23 cmul 7903 . . . . . . 7  class  x.
24 vm . . . . . . . 8  setvar  m
25 cn 9009 . . . . . . . 8  class  NN
2624cv 1363 . . . . . . . . . 10  class  m
27 cprime 12302 . . . . . . . . . 10  class  Prime
2826, 27wcel 2167 . . . . . . . . 9  wff  m  e. 
Prime
2926, 9wceq 1364 . . . . . . . . . . 11  wff  m  =  2
30 cdvds 11971 . . . . . . . . . . . . 13  class  ||
319, 8, 30wbr 4034 . . . . . . . . . . . 12  wff  2  ||  a
32 c8 9066 . . . . . . . . . . . . . . 15  class  8
33 cmo 10433 . . . . . . . . . . . . . . 15  class  mod
348, 32, 33co 5925 . . . . . . . . . . . . . 14  class  ( a  mod  8 )
35 c7 9065 . . . . . . . . . . . . . . 15  class  7
3612, 35cpr 3624 . . . . . . . . . . . . . 14  class  { 1 ,  7 }
3734, 36wcel 2167 . . . . . . . . . . . . 13  wff  ( a  mod  8 )  e. 
{ 1 ,  7 }
3837, 12, 19cif 3562 . . . . . . . . . . . 12  class  if ( ( a  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
)
3931, 6, 38cif 3562 . . . . . . . . . . 11  class  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )
40 cmin 8216 . . . . . . . . . . . . . . . . 17  class  -
4126, 12, 40co 5925 . . . . . . . . . . . . . . . 16  class  ( m  -  1 )
42 cdiv 8718 . . . . . . . . . . . . . . . 16  class  /
4341, 9, 42co 5925 . . . . . . . . . . . . . . 15  class  ( ( m  -  1 )  /  2 )
448, 43, 10co 5925 . . . . . . . . . . . . . 14  class  ( a ^ ( ( m  -  1 )  / 
2 ) )
45 caddc 7901 . . . . . . . . . . . . . 14  class  +
4644, 12, 45co 5925 . . . . . . . . . . . . 13  class  ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )
4746, 26, 33co 5925 . . . . . . . . . . . 12  class  ( ( ( a ^ (
( m  -  1 )  /  2 ) )  +  1 )  mod  m )
4847, 12, 40co 5925 . . . . . . . . . . 11  class  ( ( ( ( a ^
( ( m  - 
1 )  /  2
) )  +  1 )  mod  m )  -  1 )
4929, 39, 48cif 3562 . . . . . . . . . 10  class  if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) )
50 cpc 12480 . . . . . . . . . . 11  class  pCnt
5126, 5, 50co 5925 . . . . . . . . . 10  class  ( m 
pCnt  n )
5249, 51, 10co 5925 . . . . . . . . 9  class  ( if ( m  =  2 ,  if ( 2 
||  a ,  0 ,  if ( ( a  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( a ^ (
( m  -  1 )  /  2 ) )  +  1 )  mod  m )  - 
1 ) ) ^
( m  pCnt  n
) )
5328, 52, 12cif 3562 . . . . . . . 8  class  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  / 
2 ) )  +  1 )  mod  m
)  -  1 ) ) ^ ( m 
pCnt  n ) ) ,  1 )
5424, 25, 53cmpt 4095 . . . . . . 7  class  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  / 
2 ) )  +  1 )  mod  m
)  -  1 ) ) ^ ( m 
pCnt  n ) ) ,  1 ) )
5523, 54, 12cseq 10558 . . . . . 6  class  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) )
5622, 55cfv 5259 . . . . 5  class  (  seq 1 (  x.  , 
( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) )
5720, 56, 23co 5925 . . . 4  class  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) )
587, 14, 57cif 3562 . . 3  class  if ( n  =  0 ,  if ( ( a ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) ) )
592, 3, 4, 4, 58cmpo 5927 . 2  class  ( a  e.  ZZ ,  n  e.  ZZ  |->  if ( n  =  0 ,  if ( ( a ^
2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) ) ) )
601, 59wceq 1364 1  wff  /L 
=  ( a  e.  ZZ ,  n  e.  ZZ  |->  if ( n  =  0 ,  if ( ( a ^
2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  lgsval  15353
  Copyright terms: Public domain W3C validator