ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-lgs Unicode version

Definition df-lgs 14438
Description: Define the Legendre symbol (actually the Kronecker symbol, which extends the Legendre symbol to all integers, and also the Jacobi symbol, which restricts the Kronecker symbol to positive odd integers). See definition in [ApostolNT] p. 179 resp. definition in [ApostolNT] p. 188. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
df-lgs  |-  /L 
=  ( a  e.  ZZ ,  n  e.  ZZ  |->  if ( n  =  0 ,  if ( ( a ^
2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) ) ) )
Distinct variable group:    m, a, n

Detailed syntax breakdown of Definition df-lgs
StepHypRef Expression
1 clgs 14437 . 2  class  /L
2 va . . 3  setvar  a
3 vn . . 3  setvar  n
4 cz 9255 . . 3  class  ZZ
53cv 1352 . . . . 5  class  n
6 cc0 7813 . . . . 5  class  0
75, 6wceq 1353 . . . 4  wff  n  =  0
82cv 1352 . . . . . . 7  class  a
9 c2 8972 . . . . . . 7  class  2
10 cexp 10521 . . . . . . 7  class  ^
118, 9, 10co 5877 . . . . . 6  class  ( a ^ 2 )
12 c1 7814 . . . . . 6  class  1
1311, 12wceq 1353 . . . . 5  wff  ( a ^ 2 )  =  1
1413, 12, 6cif 3536 . . . 4  class  if ( ( a ^ 2 )  =  1 ,  1 ,  0 )
15 clt 7994 . . . . . . . 8  class  <
165, 6, 15wbr 4005 . . . . . . 7  wff  n  <  0
178, 6, 15wbr 4005 . . . . . . 7  wff  a  <  0
1816, 17wa 104 . . . . . 6  wff  ( n  <  0  /\  a  <  0 )
1912cneg 8131 . . . . . 6  class  -u 1
2018, 19, 12cif 3536 . . . . 5  class  if ( ( n  <  0  /\  a  <  0
) ,  -u 1 ,  1 )
21 cabs 11008 . . . . . . 7  class  abs
225, 21cfv 5218 . . . . . 6  class  ( abs `  n )
23 cmul 7818 . . . . . . 7  class  x.
24 vm . . . . . . . 8  setvar  m
25 cn 8921 . . . . . . . 8  class  NN
2624cv 1352 . . . . . . . . . 10  class  m
27 cprime 12109 . . . . . . . . . 10  class  Prime
2826, 27wcel 2148 . . . . . . . . 9  wff  m  e. 
Prime
2926, 9wceq 1353 . . . . . . . . . . 11  wff  m  =  2
30 cdvds 11796 . . . . . . . . . . . . 13  class  ||
319, 8, 30wbr 4005 . . . . . . . . . . . 12  wff  2  ||  a
32 c8 8978 . . . . . . . . . . . . . . 15  class  8
33 cmo 10324 . . . . . . . . . . . . . . 15  class  mod
348, 32, 33co 5877 . . . . . . . . . . . . . 14  class  ( a  mod  8 )
35 c7 8977 . . . . . . . . . . . . . . 15  class  7
3612, 35cpr 3595 . . . . . . . . . . . . . 14  class  { 1 ,  7 }
3734, 36wcel 2148 . . . . . . . . . . . . 13  wff  ( a  mod  8 )  e. 
{ 1 ,  7 }
3837, 12, 19cif 3536 . . . . . . . . . . . 12  class  if ( ( a  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
)
3931, 6, 38cif 3536 . . . . . . . . . . 11  class  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )
40 cmin 8130 . . . . . . . . . . . . . . . . 17  class  -
4126, 12, 40co 5877 . . . . . . . . . . . . . . . 16  class  ( m  -  1 )
42 cdiv 8631 . . . . . . . . . . . . . . . 16  class  /
4341, 9, 42co 5877 . . . . . . . . . . . . . . 15  class  ( ( m  -  1 )  /  2 )
448, 43, 10co 5877 . . . . . . . . . . . . . 14  class  ( a ^ ( ( m  -  1 )  / 
2 ) )
45 caddc 7816 . . . . . . . . . . . . . 14  class  +
4644, 12, 45co 5877 . . . . . . . . . . . . 13  class  ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )
4746, 26, 33co 5877 . . . . . . . . . . . 12  class  ( ( ( a ^ (
( m  -  1 )  /  2 ) )  +  1 )  mod  m )
4847, 12, 40co 5877 . . . . . . . . . . 11  class  ( ( ( ( a ^
( ( m  - 
1 )  /  2
) )  +  1 )  mod  m )  -  1 )
4929, 39, 48cif 3536 . . . . . . . . . 10  class  if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) )
50 cpc 12286 . . . . . . . . . . 11  class  pCnt
5126, 5, 50co 5877 . . . . . . . . . 10  class  ( m 
pCnt  n )
5249, 51, 10co 5877 . . . . . . . . 9  class  ( if ( m  =  2 ,  if ( 2 
||  a ,  0 ,  if ( ( a  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( a ^ (
( m  -  1 )  /  2 ) )  +  1 )  mod  m )  - 
1 ) ) ^
( m  pCnt  n
) )
5328, 52, 12cif 3536 . . . . . . . 8  class  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  / 
2 ) )  +  1 )  mod  m
)  -  1 ) ) ^ ( m 
pCnt  n ) ) ,  1 )
5424, 25, 53cmpt 4066 . . . . . . 7  class  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  / 
2 ) )  +  1 )  mod  m
)  -  1 ) ) ^ ( m 
pCnt  n ) ) ,  1 ) )
5523, 54, 12cseq 10447 . . . . . 6  class  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) )
5622, 55cfv 5218 . . . . 5  class  (  seq 1 (  x.  , 
( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) )
5720, 56, 23co 5877 . . . 4  class  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) )
587, 14, 57cif 3536 . . 3  class  if ( n  =  0 ,  if ( ( a ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) ) )
592, 3, 4, 4, 58cmpo 5879 . 2  class  ( a  e.  ZZ ,  n  e.  ZZ  |->  if ( n  =  0 ,  if ( ( a ^
2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) ) ) )
601, 59wceq 1353 1  wff  /L 
=  ( a  e.  ZZ ,  n  e.  ZZ  |->  if ( n  =  0 ,  if ( ( a ^
2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  lgsval  14444
  Copyright terms: Public domain W3C validator