ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-lgs Unicode version

Definition df-lgs 15590
Description: Define the Legendre symbol (actually the Kronecker symbol, which extends the Legendre symbol to all integers, and also the Jacobi symbol, which restricts the Kronecker symbol to positive odd integers). See definition in [ApostolNT] p. 179 resp. definition in [ApostolNT] p. 188. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
df-lgs  |-  /L 
=  ( a  e.  ZZ ,  n  e.  ZZ  |->  if ( n  =  0 ,  if ( ( a ^
2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) ) ) )
Distinct variable group:    m, a, n

Detailed syntax breakdown of Definition df-lgs
StepHypRef Expression
1 clgs 15589 . 2  class  /L
2 va . . 3  setvar  a
3 vn . . 3  setvar  n
4 cz 9407 . . 3  class  ZZ
53cv 1372 . . . . 5  class  n
6 cc0 7960 . . . . 5  class  0
75, 6wceq 1373 . . . 4  wff  n  =  0
82cv 1372 . . . . . . 7  class  a
9 c2 9122 . . . . . . 7  class  2
10 cexp 10720 . . . . . . 7  class  ^
118, 9, 10co 5967 . . . . . 6  class  ( a ^ 2 )
12 c1 7961 . . . . . 6  class  1
1311, 12wceq 1373 . . . . 5  wff  ( a ^ 2 )  =  1
1413, 12, 6cif 3579 . . . 4  class  if ( ( a ^ 2 )  =  1 ,  1 ,  0 )
15 clt 8142 . . . . . . . 8  class  <
165, 6, 15wbr 4059 . . . . . . 7  wff  n  <  0
178, 6, 15wbr 4059 . . . . . . 7  wff  a  <  0
1816, 17wa 104 . . . . . 6  wff  ( n  <  0  /\  a  <  0 )
1912cneg 8279 . . . . . 6  class  -u 1
2018, 19, 12cif 3579 . . . . 5  class  if ( ( n  <  0  /\  a  <  0
) ,  -u 1 ,  1 )
21 cabs 11423 . . . . . . 7  class  abs
225, 21cfv 5290 . . . . . 6  class  ( abs `  n )
23 cmul 7965 . . . . . . 7  class  x.
24 vm . . . . . . . 8  setvar  m
25 cn 9071 . . . . . . . 8  class  NN
2624cv 1372 . . . . . . . . . 10  class  m
27 cprime 12544 . . . . . . . . . 10  class  Prime
2826, 27wcel 2178 . . . . . . . . 9  wff  m  e. 
Prime
2926, 9wceq 1373 . . . . . . . . . . 11  wff  m  =  2
30 cdvds 12213 . . . . . . . . . . . . 13  class  ||
319, 8, 30wbr 4059 . . . . . . . . . . . 12  wff  2  ||  a
32 c8 9128 . . . . . . . . . . . . . . 15  class  8
33 cmo 10504 . . . . . . . . . . . . . . 15  class  mod
348, 32, 33co 5967 . . . . . . . . . . . . . 14  class  ( a  mod  8 )
35 c7 9127 . . . . . . . . . . . . . . 15  class  7
3612, 35cpr 3644 . . . . . . . . . . . . . 14  class  { 1 ,  7 }
3734, 36wcel 2178 . . . . . . . . . . . . 13  wff  ( a  mod  8 )  e. 
{ 1 ,  7 }
3837, 12, 19cif 3579 . . . . . . . . . . . 12  class  if ( ( a  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
)
3931, 6, 38cif 3579 . . . . . . . . . . 11  class  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )
40 cmin 8278 . . . . . . . . . . . . . . . . 17  class  -
4126, 12, 40co 5967 . . . . . . . . . . . . . . . 16  class  ( m  -  1 )
42 cdiv 8780 . . . . . . . . . . . . . . . 16  class  /
4341, 9, 42co 5967 . . . . . . . . . . . . . . 15  class  ( ( m  -  1 )  /  2 )
448, 43, 10co 5967 . . . . . . . . . . . . . 14  class  ( a ^ ( ( m  -  1 )  / 
2 ) )
45 caddc 7963 . . . . . . . . . . . . . 14  class  +
4644, 12, 45co 5967 . . . . . . . . . . . . 13  class  ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )
4746, 26, 33co 5967 . . . . . . . . . . . 12  class  ( ( ( a ^ (
( m  -  1 )  /  2 ) )  +  1 )  mod  m )
4847, 12, 40co 5967 . . . . . . . . . . 11  class  ( ( ( ( a ^
( ( m  - 
1 )  /  2
) )  +  1 )  mod  m )  -  1 )
4929, 39, 48cif 3579 . . . . . . . . . 10  class  if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) )
50 cpc 12722 . . . . . . . . . . 11  class  pCnt
5126, 5, 50co 5967 . . . . . . . . . 10  class  ( m 
pCnt  n )
5249, 51, 10co 5967 . . . . . . . . 9  class  ( if ( m  =  2 ,  if ( 2 
||  a ,  0 ,  if ( ( a  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( a ^ (
( m  -  1 )  /  2 ) )  +  1 )  mod  m )  - 
1 ) ) ^
( m  pCnt  n
) )
5328, 52, 12cif 3579 . . . . . . . 8  class  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  / 
2 ) )  +  1 )  mod  m
)  -  1 ) ) ^ ( m 
pCnt  n ) ) ,  1 )
5424, 25, 53cmpt 4121 . . . . . . 7  class  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  / 
2 ) )  +  1 )  mod  m
)  -  1 ) ) ^ ( m 
pCnt  n ) ) ,  1 ) )
5523, 54, 12cseq 10629 . . . . . 6  class  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) )
5622, 55cfv 5290 . . . . 5  class  (  seq 1 (  x.  , 
( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) )
5720, 56, 23co 5967 . . . 4  class  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) )
587, 14, 57cif 3579 . . 3  class  if ( n  =  0 ,  if ( ( a ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) ) )
592, 3, 4, 4, 58cmpo 5969 . 2  class  ( a  e.  ZZ ,  n  e.  ZZ  |->  if ( n  =  0 ,  if ( ( a ^
2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) ) ) )
601, 59wceq 1373 1  wff  /L 
=  ( a  e.  ZZ ,  n  e.  ZZ  |->  if ( n  =  0 ,  if ( ( a ^
2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  lgsval  15596
  Copyright terms: Public domain W3C validator