ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-lgs Unicode version

Definition df-lgs 13693
Description: Define the Legendre symbol (actually the Kronecker symbol, which extends the Legendre symbol to all integers, and also the Jacobi symbol, which restricts the Kronecker symbol to positive odd integers). See definition in [ApostolNT] p. 179 resp. definition in [ApostolNT] p. 188. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
df-lgs  |-  /L 
=  ( a  e.  ZZ ,  n  e.  ZZ  |->  if ( n  =  0 ,  if ( ( a ^
2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) ) ) )
Distinct variable group:    m, a, n

Detailed syntax breakdown of Definition df-lgs
StepHypRef Expression
1 clgs 13692 . 2  class  /L
2 va . . 3  setvar  a
3 vn . . 3  setvar  n
4 cz 9212 . . 3  class  ZZ
53cv 1347 . . . . 5  class  n
6 cc0 7774 . . . . 5  class  0
75, 6wceq 1348 . . . 4  wff  n  =  0
82cv 1347 . . . . . . 7  class  a
9 c2 8929 . . . . . . 7  class  2
10 cexp 10475 . . . . . . 7  class  ^
118, 9, 10co 5853 . . . . . 6  class  ( a ^ 2 )
12 c1 7775 . . . . . 6  class  1
1311, 12wceq 1348 . . . . 5  wff  ( a ^ 2 )  =  1
1413, 12, 6cif 3526 . . . 4  class  if ( ( a ^ 2 )  =  1 ,  1 ,  0 )
15 clt 7954 . . . . . . . 8  class  <
165, 6, 15wbr 3989 . . . . . . 7  wff  n  <  0
178, 6, 15wbr 3989 . . . . . . 7  wff  a  <  0
1816, 17wa 103 . . . . . 6  wff  ( n  <  0  /\  a  <  0 )
1912cneg 8091 . . . . . 6  class  -u 1
2018, 19, 12cif 3526 . . . . 5  class  if ( ( n  <  0  /\  a  <  0
) ,  -u 1 ,  1 )
21 cabs 10961 . . . . . . 7  class  abs
225, 21cfv 5198 . . . . . 6  class  ( abs `  n )
23 cmul 7779 . . . . . . 7  class  x.
24 vm . . . . . . . 8  setvar  m
25 cn 8878 . . . . . . . 8  class  NN
2624cv 1347 . . . . . . . . . 10  class  m
27 cprime 12061 . . . . . . . . . 10  class  Prime
2826, 27wcel 2141 . . . . . . . . 9  wff  m  e. 
Prime
2926, 9wceq 1348 . . . . . . . . . . 11  wff  m  =  2
30 cdvds 11749 . . . . . . . . . . . . 13  class  ||
319, 8, 30wbr 3989 . . . . . . . . . . . 12  wff  2  ||  a
32 c8 8935 . . . . . . . . . . . . . . 15  class  8
33 cmo 10278 . . . . . . . . . . . . . . 15  class  mod
348, 32, 33co 5853 . . . . . . . . . . . . . 14  class  ( a  mod  8 )
35 c7 8934 . . . . . . . . . . . . . . 15  class  7
3612, 35cpr 3584 . . . . . . . . . . . . . 14  class  { 1 ,  7 }
3734, 36wcel 2141 . . . . . . . . . . . . 13  wff  ( a  mod  8 )  e. 
{ 1 ,  7 }
3837, 12, 19cif 3526 . . . . . . . . . . . 12  class  if ( ( a  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
)
3931, 6, 38cif 3526 . . . . . . . . . . 11  class  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )
40 cmin 8090 . . . . . . . . . . . . . . . . 17  class  -
4126, 12, 40co 5853 . . . . . . . . . . . . . . . 16  class  ( m  -  1 )
42 cdiv 8589 . . . . . . . . . . . . . . . 16  class  /
4341, 9, 42co 5853 . . . . . . . . . . . . . . 15  class  ( ( m  -  1 )  /  2 )
448, 43, 10co 5853 . . . . . . . . . . . . . 14  class  ( a ^ ( ( m  -  1 )  / 
2 ) )
45 caddc 7777 . . . . . . . . . . . . . 14  class  +
4644, 12, 45co 5853 . . . . . . . . . . . . 13  class  ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )
4746, 26, 33co 5853 . . . . . . . . . . . 12  class  ( ( ( a ^ (
( m  -  1 )  /  2 ) )  +  1 )  mod  m )
4847, 12, 40co 5853 . . . . . . . . . . 11  class  ( ( ( ( a ^
( ( m  - 
1 )  /  2
) )  +  1 )  mod  m )  -  1 )
4929, 39, 48cif 3526 . . . . . . . . . 10  class  if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) )
50 cpc 12238 . . . . . . . . . . 11  class  pCnt
5126, 5, 50co 5853 . . . . . . . . . 10  class  ( m 
pCnt  n )
5249, 51, 10co 5853 . . . . . . . . 9  class  ( if ( m  =  2 ,  if ( 2 
||  a ,  0 ,  if ( ( a  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( a ^ (
( m  -  1 )  /  2 ) )  +  1 )  mod  m )  - 
1 ) ) ^
( m  pCnt  n
) )
5328, 52, 12cif 3526 . . . . . . . 8  class  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  / 
2 ) )  +  1 )  mod  m
)  -  1 ) ) ^ ( m 
pCnt  n ) ) ,  1 )
5424, 25, 53cmpt 4050 . . . . . . 7  class  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  / 
2 ) )  +  1 )  mod  m
)  -  1 ) ) ^ ( m 
pCnt  n ) ) ,  1 ) )
5523, 54, 12cseq 10401 . . . . . 6  class  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) )
5622, 55cfv 5198 . . . . 5  class  (  seq 1 (  x.  , 
( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) )
5720, 56, 23co 5853 . . . 4  class  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) )
587, 14, 57cif 3526 . . 3  class  if ( n  =  0 ,  if ( ( a ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) ) )
592, 3, 4, 4, 58cmpo 5855 . 2  class  ( a  e.  ZZ ,  n  e.  ZZ  |->  if ( n  =  0 ,  if ( ( a ^
2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) ) ) )
601, 59wceq 1348 1  wff  /L 
=  ( a  e.  ZZ ,  n  e.  ZZ  |->  if ( n  =  0 ,  if ( ( a ^
2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  lgsval  13699
  Copyright terms: Public domain W3C validator