ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-lgs Unicode version

Definition df-lgs 14852
Description: Define the Legendre symbol (actually the Kronecker symbol, which extends the Legendre symbol to all integers, and also the Jacobi symbol, which restricts the Kronecker symbol to positive odd integers). See definition in [ApostolNT] p. 179 resp. definition in [ApostolNT] p. 188. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
df-lgs  |-  /L 
=  ( a  e.  ZZ ,  n  e.  ZZ  |->  if ( n  =  0 ,  if ( ( a ^
2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) ) ) )
Distinct variable group:    m, a, n

Detailed syntax breakdown of Definition df-lgs
StepHypRef Expression
1 clgs 14851 . 2  class  /L
2 va . . 3  setvar  a
3 vn . . 3  setvar  n
4 cz 9282 . . 3  class  ZZ
53cv 1363 . . . . 5  class  n
6 cc0 7840 . . . . 5  class  0
75, 6wceq 1364 . . . 4  wff  n  =  0
82cv 1363 . . . . . . 7  class  a
9 c2 8999 . . . . . . 7  class  2
10 cexp 10549 . . . . . . 7  class  ^
118, 9, 10co 5895 . . . . . 6  class  ( a ^ 2 )
12 c1 7841 . . . . . 6  class  1
1311, 12wceq 1364 . . . . 5  wff  ( a ^ 2 )  =  1
1413, 12, 6cif 3549 . . . 4  class  if ( ( a ^ 2 )  =  1 ,  1 ,  0 )
15 clt 8021 . . . . . . . 8  class  <
165, 6, 15wbr 4018 . . . . . . 7  wff  n  <  0
178, 6, 15wbr 4018 . . . . . . 7  wff  a  <  0
1816, 17wa 104 . . . . . 6  wff  ( n  <  0  /\  a  <  0 )
1912cneg 8158 . . . . . 6  class  -u 1
2018, 19, 12cif 3549 . . . . 5  class  if ( ( n  <  0  /\  a  <  0
) ,  -u 1 ,  1 )
21 cabs 11037 . . . . . . 7  class  abs
225, 21cfv 5235 . . . . . 6  class  ( abs `  n )
23 cmul 7845 . . . . . . 7  class  x.
24 vm . . . . . . . 8  setvar  m
25 cn 8948 . . . . . . . 8  class  NN
2624cv 1363 . . . . . . . . . 10  class  m
27 cprime 12138 . . . . . . . . . 10  class  Prime
2826, 27wcel 2160 . . . . . . . . 9  wff  m  e. 
Prime
2926, 9wceq 1364 . . . . . . . . . . 11  wff  m  =  2
30 cdvds 11825 . . . . . . . . . . . . 13  class  ||
319, 8, 30wbr 4018 . . . . . . . . . . . 12  wff  2  ||  a
32 c8 9005 . . . . . . . . . . . . . . 15  class  8
33 cmo 10352 . . . . . . . . . . . . . . 15  class  mod
348, 32, 33co 5895 . . . . . . . . . . . . . 14  class  ( a  mod  8 )
35 c7 9004 . . . . . . . . . . . . . . 15  class  7
3612, 35cpr 3608 . . . . . . . . . . . . . 14  class  { 1 ,  7 }
3734, 36wcel 2160 . . . . . . . . . . . . 13  wff  ( a  mod  8 )  e. 
{ 1 ,  7 }
3837, 12, 19cif 3549 . . . . . . . . . . . 12  class  if ( ( a  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
)
3931, 6, 38cif 3549 . . . . . . . . . . 11  class  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )
40 cmin 8157 . . . . . . . . . . . . . . . . 17  class  -
4126, 12, 40co 5895 . . . . . . . . . . . . . . . 16  class  ( m  -  1 )
42 cdiv 8658 . . . . . . . . . . . . . . . 16  class  /
4341, 9, 42co 5895 . . . . . . . . . . . . . . 15  class  ( ( m  -  1 )  /  2 )
448, 43, 10co 5895 . . . . . . . . . . . . . 14  class  ( a ^ ( ( m  -  1 )  / 
2 ) )
45 caddc 7843 . . . . . . . . . . . . . 14  class  +
4644, 12, 45co 5895 . . . . . . . . . . . . 13  class  ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )
4746, 26, 33co 5895 . . . . . . . . . . . 12  class  ( ( ( a ^ (
( m  -  1 )  /  2 ) )  +  1 )  mod  m )
4847, 12, 40co 5895 . . . . . . . . . . 11  class  ( ( ( ( a ^
( ( m  - 
1 )  /  2
) )  +  1 )  mod  m )  -  1 )
4929, 39, 48cif 3549 . . . . . . . . . 10  class  if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) )
50 cpc 12315 . . . . . . . . . . 11  class  pCnt
5126, 5, 50co 5895 . . . . . . . . . 10  class  ( m 
pCnt  n )
5249, 51, 10co 5895 . . . . . . . . 9  class  ( if ( m  =  2 ,  if ( 2 
||  a ,  0 ,  if ( ( a  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( a ^ (
( m  -  1 )  /  2 ) )  +  1 )  mod  m )  - 
1 ) ) ^
( m  pCnt  n
) )
5328, 52, 12cif 3549 . . . . . . . 8  class  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  / 
2 ) )  +  1 )  mod  m
)  -  1 ) ) ^ ( m 
pCnt  n ) ) ,  1 )
5424, 25, 53cmpt 4079 . . . . . . 7  class  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  / 
2 ) )  +  1 )  mod  m
)  -  1 ) ) ^ ( m 
pCnt  n ) ) ,  1 ) )
5523, 54, 12cseq 10475 . . . . . 6  class  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) )
5622, 55cfv 5235 . . . . 5  class  (  seq 1 (  x.  , 
( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) )
5720, 56, 23co 5895 . . . 4  class  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) )
587, 14, 57cif 3549 . . 3  class  if ( n  =  0 ,  if ( ( a ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) ) )
592, 3, 4, 4, 58cmpo 5897 . 2  class  ( a  e.  ZZ ,  n  e.  ZZ  |->  if ( n  =  0 ,  if ( ( a ^
2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) ) ) )
601, 59wceq 1364 1  wff  /L 
=  ( a  e.  ZZ ,  n  e.  ZZ  |->  if ( n  =  0 ,  if ( ( a ^
2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  lgsval  14858
  Copyright terms: Public domain W3C validator