ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zabsle1 GIF version

Theorem zabsle1 15551
Description: {-1, 0, 1} is the set of all integers with absolute value at most 1. (Contributed by AV, 13-Jul-2021.)
Assertion
Ref Expression
zabsle1 (𝑍 ∈ ℤ → (𝑍 ∈ {-1, 0, 1} ↔ (abs‘𝑍) ≤ 1))

Proof of Theorem zabsle1
StepHypRef Expression
1 eltpi 3685 . . 3 (𝑍 ∈ {-1, 0, 1} → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
2 fveq2 5589 . . . . 5 (𝑍 = -1 → (abs‘𝑍) = (abs‘-1))
3 ax-1cn 8038 . . . . . . . 8 1 ∈ ℂ
43absnegi 11533 . . . . . . 7 (abs‘-1) = (abs‘1)
5 abs1 11458 . . . . . . 7 (abs‘1) = 1
64, 5eqtri 2227 . . . . . 6 (abs‘-1) = 1
7 1le1 8665 . . . . . 6 1 ≤ 1
86, 7eqbrtri 4072 . . . . 5 (abs‘-1) ≤ 1
92, 8eqbrtrdi 4090 . . . 4 (𝑍 = -1 → (abs‘𝑍) ≤ 1)
10 fveq2 5589 . . . . 5 (𝑍 = 0 → (abs‘𝑍) = (abs‘0))
11 abs0 11444 . . . . . 6 (abs‘0) = 0
12 0le1 8574 . . . . . 6 0 ≤ 1
1311, 12eqbrtri 4072 . . . . 5 (abs‘0) ≤ 1
1410, 13eqbrtrdi 4090 . . . 4 (𝑍 = 0 → (abs‘𝑍) ≤ 1)
15 fveq2 5589 . . . . 5 (𝑍 = 1 → (abs‘𝑍) = (abs‘1))
165, 7eqbrtri 4072 . . . . 5 (abs‘1) ≤ 1
1715, 16eqbrtrdi 4090 . . . 4 (𝑍 = 1 → (abs‘𝑍) ≤ 1)
189, 14, 173jaoi 1316 . . 3 ((𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1) → (abs‘𝑍) ≤ 1)
191, 18syl 14 . 2 (𝑍 ∈ {-1, 0, 1} → (abs‘𝑍) ≤ 1)
20 zre 9396 . . . 4 (𝑍 ∈ ℤ → 𝑍 ∈ ℝ)
21 1red 8107 . . . 4 (𝑍 ∈ ℤ → 1 ∈ ℝ)
2220, 21absled 11561 . . 3 (𝑍 ∈ ℤ → ((abs‘𝑍) ≤ 1 ↔ (-1 ≤ 𝑍𝑍 ≤ 1)))
23 elz 9394 . . . 4 (𝑍 ∈ ℤ ↔ (𝑍 ∈ ℝ ∧ (𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ)))
24 3mix2 1170 . . . . . . . . . 10 (𝑍 = 0 → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
2524a1d 22 . . . . . . . . 9 (𝑍 = 0 → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
26 nnle1eq1 9080 . . . . . . . . . . . . . . 15 (𝑍 ∈ ℕ → (𝑍 ≤ 1 ↔ 𝑍 = 1))
2726biimpac 298 . . . . . . . . . . . . . 14 ((𝑍 ≤ 1 ∧ 𝑍 ∈ ℕ) → 𝑍 = 1)
28273mix3d 1177 . . . . . . . . . . . . 13 ((𝑍 ≤ 1 ∧ 𝑍 ∈ ℕ) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
2928ex 115 . . . . . . . . . . . 12 (𝑍 ≤ 1 → (𝑍 ∈ ℕ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
3029adantl 277 . . . . . . . . . . 11 ((-1 ≤ 𝑍𝑍 ≤ 1) → (𝑍 ∈ ℕ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
3130adantl 277 . . . . . . . . . 10 ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 ∈ ℕ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
3231com12 30 . . . . . . . . 9 (𝑍 ∈ ℕ → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
33 elnnz1 9415 . . . . . . . . . 10 (-𝑍 ∈ ℕ ↔ (-𝑍 ∈ ℤ ∧ 1 ≤ -𝑍))
34 1red 8107 . . . . . . . . . . . . . . 15 (𝑍 ∈ ℝ → 1 ∈ ℝ)
35 lenegcon2 8560 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 𝑍 ∈ ℝ) → (1 ≤ -𝑍𝑍 ≤ -1))
3634, 35mpancom 422 . . . . . . . . . . . . . 14 (𝑍 ∈ ℝ → (1 ≤ -𝑍𝑍 ≤ -1))
37 neg1rr 9162 . . . . . . . . . . . . . . . . . . . . 21 -1 ∈ ℝ
3837a1i 9 . . . . . . . . . . . . . . . . . . . 20 (𝑍 ∈ ℝ → -1 ∈ ℝ)
39 id 19 . . . . . . . . . . . . . . . . . . . 20 (𝑍 ∈ ℝ → 𝑍 ∈ ℝ)
4038, 39letri3d 8208 . . . . . . . . . . . . . . . . . . 19 (𝑍 ∈ ℝ → (-1 = 𝑍 ↔ (-1 ≤ 𝑍𝑍 ≤ -1)))
41 3mix1 1169 . . . . . . . . . . . . . . . . . . . 20 (𝑍 = -1 → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
4241eqcoms 2209 . . . . . . . . . . . . . . . . . . 19 (-1 = 𝑍 → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
4340, 42biimtrrdi 164 . . . . . . . . . . . . . . . . . 18 (𝑍 ∈ ℝ → ((-1 ≤ 𝑍𝑍 ≤ -1) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
4443com12 30 . . . . . . . . . . . . . . . . 17 ((-1 ≤ 𝑍𝑍 ≤ -1) → (𝑍 ∈ ℝ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
4544ex 115 . . . . . . . . . . . . . . . 16 (-1 ≤ 𝑍 → (𝑍 ≤ -1 → (𝑍 ∈ ℝ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))))
4645adantr 276 . . . . . . . . . . . . . . 15 ((-1 ≤ 𝑍𝑍 ≤ 1) → (𝑍 ≤ -1 → (𝑍 ∈ ℝ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))))
4746com13 80 . . . . . . . . . . . . . 14 (𝑍 ∈ ℝ → (𝑍 ≤ -1 → ((-1 ≤ 𝑍𝑍 ≤ 1) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))))
4836, 47sylbid 150 . . . . . . . . . . . . 13 (𝑍 ∈ ℝ → (1 ≤ -𝑍 → ((-1 ≤ 𝑍𝑍 ≤ 1) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))))
4948com12 30 . . . . . . . . . . . 12 (1 ≤ -𝑍 → (𝑍 ∈ ℝ → ((-1 ≤ 𝑍𝑍 ≤ 1) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))))
5049impd 254 . . . . . . . . . . 11 (1 ≤ -𝑍 → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5150adantl 277 . . . . . . . . . 10 ((-𝑍 ∈ ℤ ∧ 1 ≤ -𝑍) → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5233, 51sylbi 121 . . . . . . . . 9 (-𝑍 ∈ ℕ → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5325, 32, 523jaoi 1316 . . . . . . . 8 ((𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ) → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5453imp 124 . . . . . . 7 (((𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ) ∧ (𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1))) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
55 eltpg 3683 . . . . . . . . 9 (𝑍 ∈ ℝ → (𝑍 ∈ {-1, 0, 1} ↔ (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5655adantr 276 . . . . . . . 8 ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 ∈ {-1, 0, 1} ↔ (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5756adantl 277 . . . . . . 7 (((𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ) ∧ (𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1))) → (𝑍 ∈ {-1, 0, 1} ↔ (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5854, 57mpbird 167 . . . . . 6 (((𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ) ∧ (𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1))) → 𝑍 ∈ {-1, 0, 1})
5958exp32 365 . . . . 5 ((𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ) → (𝑍 ∈ ℝ → ((-1 ≤ 𝑍𝑍 ≤ 1) → 𝑍 ∈ {-1, 0, 1})))
6059impcom 125 . . . 4 ((𝑍 ∈ ℝ ∧ (𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ)) → ((-1 ≤ 𝑍𝑍 ≤ 1) → 𝑍 ∈ {-1, 0, 1}))
6123, 60sylbi 121 . . 3 (𝑍 ∈ ℤ → ((-1 ≤ 𝑍𝑍 ≤ 1) → 𝑍 ∈ {-1, 0, 1}))
6222, 61sylbid 150 . 2 (𝑍 ∈ ℤ → ((abs‘𝑍) ≤ 1 → 𝑍 ∈ {-1, 0, 1}))
6319, 62impbid2 143 1 (𝑍 ∈ ℤ → (𝑍 ∈ {-1, 0, 1} ↔ (abs‘𝑍) ≤ 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3o 980   = wceq 1373  wcel 2177  {ctp 3640   class class class wbr 4051  cfv 5280  cr 7944  0cc0 7945  1c1 7946  cle 8128  -cneg 8264  cn 9056  cz 9392  abscabs 11383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-tp 3646  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-rp 9796  df-seqfrec 10615  df-exp 10706  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385
This theorem is referenced by:  lgscl1  15575
  Copyright terms: Public domain W3C validator