ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdsex GIF version

Theorem prdsex 12880
Description: Existence of the structure product. (Contributed by Jim Kingdon, 18-Mar-2025.)
Assertion
Ref Expression
prdsex ((𝑆𝑉𝑅𝑊) → (𝑆Xs𝑅) ∈ V)

Proof of Theorem prdsex
Dummy variables 𝑎 𝑐 𝑑 𝑒 𝑓 𝑔 𝑟 𝑠 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2771 . . . 4 (𝑆𝑉𝑆 ∈ V)
21adantr 276 . . 3 ((𝑆𝑉𝑅𝑊) → 𝑆 ∈ V)
3 elex 2771 . . . 4 (𝑅𝑊𝑅 ∈ V)
43adantl 277 . . 3 ((𝑆𝑉𝑅𝑊) → 𝑅 ∈ V)
5 dmexg 4926 . . . . 5 (𝑅𝑊 → dom 𝑅 ∈ V)
6 basfn 12676 . . . . . . 7 Base Fn V
7 simpr 110 . . . . . . . 8 ((𝑆𝑉𝑅𝑊) → 𝑅𝑊)
8 vex 2763 . . . . . . . 8 𝑥 ∈ V
9 fvexg 5573 . . . . . . . 8 ((𝑅𝑊𝑥 ∈ V) → (𝑅𝑥) ∈ V)
107, 8, 9sylancl 413 . . . . . . 7 ((𝑆𝑉𝑅𝑊) → (𝑅𝑥) ∈ V)
11 funfvex 5571 . . . . . . . 8 ((Fun Base ∧ (𝑅𝑥) ∈ dom Base) → (Base‘(𝑅𝑥)) ∈ V)
1211funfni 5354 . . . . . . 7 ((Base Fn V ∧ (𝑅𝑥) ∈ V) → (Base‘(𝑅𝑥)) ∈ V)
136, 10, 12sylancr 414 . . . . . 6 ((𝑆𝑉𝑅𝑊) → (Base‘(𝑅𝑥)) ∈ V)
1413ralrimivw 2568 . . . . 5 ((𝑆𝑉𝑅𝑊) → ∀𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∈ V)
15 ixpexgg 6776 . . . . 5 ((dom 𝑅 ∈ V ∧ ∀𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∈ V) → X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∈ V)
165, 14, 15syl2an2 594 . . . 4 ((𝑆𝑉𝑅𝑊) → X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∈ V)
17 vex 2763 . . . . . . 7 𝑣 ∈ V
1817, 17mpoex 6267 . . . . . 6 (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) ∈ V
19 basendxnn 12674 . . . . . . . . . . 11 (Base‘ndx) ∈ ℕ
2017a1i 9 . . . . . . . . . . 11 ((𝑆𝑉𝑅𝑊) → 𝑣 ∈ V)
21 opexg 4257 . . . . . . . . . . 11 (((Base‘ndx) ∈ ℕ ∧ 𝑣 ∈ V) → ⟨(Base‘ndx), 𝑣⟩ ∈ V)
2219, 20, 21sylancr 414 . . . . . . . . . 10 ((𝑆𝑉𝑅𝑊) → ⟨(Base‘ndx), 𝑣⟩ ∈ V)
23 plusgndxnn 12729 . . . . . . . . . . . . 13 (+g‘ndx) ∈ ℕ
2423elexi 2772 . . . . . . . . . . . 12 (+g‘ndx) ∈ V
2517, 17mpoex 6267 . . . . . . . . . . . 12 (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))) ∈ V
2624, 25opex 4258 . . . . . . . . . . 11 ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩ ∈ V
2726a1i 9 . . . . . . . . . 10 ((𝑆𝑉𝑅𝑊) → ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩ ∈ V)
28 mulrslid 12749 . . . . . . . . . . . . . 14 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
2928simpri 113 . . . . . . . . . . . . 13 (.r‘ndx) ∈ ℕ
3029elexi 2772 . . . . . . . . . . . 12 (.r‘ndx) ∈ V
3117, 17mpoex 6267 . . . . . . . . . . . 12 (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))) ∈ V
3230, 31opex 4258 . . . . . . . . . . 11 ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩ ∈ V
3332a1i 9 . . . . . . . . . 10 ((𝑆𝑉𝑅𝑊) → ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩ ∈ V)
34 tpexg 4475 . . . . . . . . . 10 ((⟨(Base‘ndx), 𝑣⟩ ∈ V ∧ ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩ ∈ V ∧ ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩ ∈ V) → {⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∈ V)
3522, 27, 33, 34syl3anc 1249 . . . . . . . . 9 ((𝑆𝑉𝑅𝑊) → {⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∈ V)
36 scaslid 12770 . . . . . . . . . . . 12 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
3736simpri 113 . . . . . . . . . . 11 (Scalar‘ndx) ∈ ℕ
38 simpl 109 . . . . . . . . . . 11 ((𝑆𝑉𝑅𝑊) → 𝑆𝑉)
39 opexg 4257 . . . . . . . . . . 11 (((Scalar‘ndx) ∈ ℕ ∧ 𝑆𝑉) → ⟨(Scalar‘ndx), 𝑆⟩ ∈ V)
4037, 38, 39sylancr 414 . . . . . . . . . 10 ((𝑆𝑉𝑅𝑊) → ⟨(Scalar‘ndx), 𝑆⟩ ∈ V)
41 vscaslid 12780 . . . . . . . . . . . 12 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
4241simpri 113 . . . . . . . . . . 11 ( ·𝑠 ‘ndx) ∈ ℕ
4338elexd 2773 . . . . . . . . . . . . 13 ((𝑆𝑉𝑅𝑊) → 𝑆 ∈ V)
44 funfvex 5571 . . . . . . . . . . . . . 14 ((Fun Base ∧ 𝑆 ∈ dom Base) → (Base‘𝑆) ∈ V)
4544funfni 5354 . . . . . . . . . . . . 13 ((Base Fn V ∧ 𝑆 ∈ V) → (Base‘𝑆) ∈ V)
466, 43, 45sylancr 414 . . . . . . . . . . . 12 ((𝑆𝑉𝑅𝑊) → (Base‘𝑆) ∈ V)
47 mpoexga 6265 . . . . . . . . . . . 12 (((Base‘𝑆) ∈ V ∧ 𝑣 ∈ V) → (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) ∈ V)
4846, 17, 47sylancl 413 . . . . . . . . . . 11 ((𝑆𝑉𝑅𝑊) → (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) ∈ V)
49 opexg 4257 . . . . . . . . . . 11 ((( ·𝑠 ‘ndx) ∈ ℕ ∧ (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) ∈ V) → ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩ ∈ V)
5042, 48, 49sylancr 414 . . . . . . . . . 10 ((𝑆𝑉𝑅𝑊) → ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩ ∈ V)
51 ipslid 12788 . . . . . . . . . . . . . 14 (·𝑖 = Slot (·𝑖‘ndx) ∧ (·𝑖‘ndx) ∈ ℕ)
5251simpri 113 . . . . . . . . . . . . 13 (·𝑖‘ndx) ∈ ℕ
5352elexi 2772 . . . . . . . . . . . 12 (·𝑖‘ndx) ∈ V
5417, 17mpoex 6267 . . . . . . . . . . . 12 (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))) ∈ V
5553, 54opex 4258 . . . . . . . . . . 11 ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩ ∈ V
5655a1i 9 . . . . . . . . . 10 ((𝑆𝑉𝑅𝑊) → ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩ ∈ V)
57 tpexg 4475 . . . . . . . . . 10 ((⟨(Scalar‘ndx), 𝑆⟩ ∈ V ∧ ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩ ∈ V ∧ ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩ ∈ V) → {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩} ∈ V)
5840, 50, 56, 57syl3anc 1249 . . . . . . . . 9 ((𝑆𝑉𝑅𝑊) → {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩} ∈ V)
59 unexg 4474 . . . . . . . . 9 (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∈ V ∧ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩} ∈ V) → ({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∈ V)
6035, 58, 59syl2anc 411 . . . . . . . 8 ((𝑆𝑉𝑅𝑊) → ({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∈ V)
61 tsetndxnn 12806 . . . . . . . . . . 11 (TopSet‘ndx) ∈ ℕ
62 topnfn 12855 . . . . . . . . . . . . . 14 TopOpen Fn V
63 fnfun 5351 . . . . . . . . . . . . . 14 (TopOpen Fn V → Fun TopOpen)
6462, 63ax-mp 5 . . . . . . . . . . . . 13 Fun TopOpen
65 cofunexg 6161 . . . . . . . . . . . . 13 ((Fun TopOpen ∧ 𝑅𝑊) → (TopOpen ∘ 𝑅) ∈ V)
6664, 7, 65sylancr 414 . . . . . . . . . . . 12 ((𝑆𝑉𝑅𝑊) → (TopOpen ∘ 𝑅) ∈ V)
67 ptex 12875 . . . . . . . . . . . 12 ((TopOpen ∘ 𝑅) ∈ V → (∏t‘(TopOpen ∘ 𝑅)) ∈ V)
6866, 67syl 14 . . . . . . . . . . 11 ((𝑆𝑉𝑅𝑊) → (∏t‘(TopOpen ∘ 𝑅)) ∈ V)
69 opexg 4257 . . . . . . . . . . 11 (((TopSet‘ndx) ∈ ℕ ∧ (∏t‘(TopOpen ∘ 𝑅)) ∈ V) → ⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩ ∈ V)
7061, 68, 69sylancr 414 . . . . . . . . . 10 ((𝑆𝑉𝑅𝑊) → ⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩ ∈ V)
71 plendxnn 12820 . . . . . . . . . . 11 (le‘ndx) ∈ ℕ
72 vex 2763 . . . . . . . . . . . . . . . 16 𝑓 ∈ V
73 vex 2763 . . . . . . . . . . . . . . . 16 𝑔 ∈ V
7472, 73prss 3774 . . . . . . . . . . . . . . 15 ((𝑓𝑣𝑔𝑣) ↔ {𝑓, 𝑔} ⊆ 𝑣)
7574anbi1i 458 . . . . . . . . . . . . . 14 (((𝑓𝑣𝑔𝑣) ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥)) ↔ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥)))
7675opabbii 4096 . . . . . . . . . . . . 13 {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝑣𝑔𝑣) ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}
7717, 17xpex 4774 . . . . . . . . . . . . . 14 (𝑣 × 𝑣) ∈ V
78 opabssxp 4733 . . . . . . . . . . . . . 14 {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝑣𝑔𝑣) ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} ⊆ (𝑣 × 𝑣)
7977, 78ssexi 4167 . . . . . . . . . . . . 13 {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝑣𝑔𝑣) ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} ∈ V
8076, 79eqeltrri 2267 . . . . . . . . . . . 12 {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} ∈ V
8180a1i 9 . . . . . . . . . . 11 ((𝑆𝑉𝑅𝑊) → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} ∈ V)
82 opexg 4257 . . . . . . . . . . 11 (((le‘ndx) ∈ ℕ ∧ {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} ∈ V) → ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩ ∈ V)
8371, 81, 82sylancr 414 . . . . . . . . . 10 ((𝑆𝑉𝑅𝑊) → ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩ ∈ V)
84 dsndxnn 12831 . . . . . . . . . . . 12 (dist‘ndx) ∈ ℕ
8517, 17mpoex 6267 . . . . . . . . . . . 12 (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )) ∈ V
86 opexg 4257 . . . . . . . . . . . 12 (((dist‘ndx) ∈ ℕ ∧ (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )) ∈ V) → ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩ ∈ V)
8784, 85, 86mp2an 426 . . . . . . . . . . 11 ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩ ∈ V
8887a1i 9 . . . . . . . . . 10 ((𝑆𝑉𝑅𝑊) → ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩ ∈ V)
89 tpexg 4475 . . . . . . . . . 10 ((⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩ ∈ V ∧ ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩ ∈ V ∧ ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩ ∈ V) → {⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∈ V)
9070, 83, 88, 89syl3anc 1249 . . . . . . . . 9 ((𝑆𝑉𝑅𝑊) → {⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∈ V)
91 homslid 12847 . . . . . . . . . . . 12 (Hom = Slot (Hom ‘ndx) ∧ (Hom ‘ndx) ∈ ℕ)
9291simpri 113 . . . . . . . . . . 11 (Hom ‘ndx) ∈ ℕ
93 vex 2763 . . . . . . . . . . 11 ∈ V
94 opexg 4257 . . . . . . . . . . 11 (((Hom ‘ndx) ∈ ℕ ∧ ∈ V) → ⟨(Hom ‘ndx), ⟩ ∈ V)
9592, 93, 94mp2an 426 . . . . . . . . . 10 ⟨(Hom ‘ndx), ⟩ ∈ V
96 ccoslid 12849 . . . . . . . . . . . . 13 (comp = Slot (comp‘ndx) ∧ (comp‘ndx) ∈ ℕ)
9796simpri 113 . . . . . . . . . . . 12 (comp‘ndx) ∈ ℕ
9877, 17mpoex 6267 . . . . . . . . . . . 12 (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))) ∈ V
99 opexg 4257 . . . . . . . . . . . 12 (((comp‘ndx) ∈ ℕ ∧ (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))) ∈ V) → ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩ ∈ V)
10097, 98, 99mp2an 426 . . . . . . . . . . 11 ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩ ∈ V
101100a1i 9 . . . . . . . . . 10 ((𝑆𝑉𝑅𝑊) → ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩ ∈ V)
102 prexg 4240 . . . . . . . . . 10 ((⟨(Hom ‘ndx), ⟩ ∈ V ∧ ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩ ∈ V) → {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩} ∈ V)
10395, 101, 102sylancr 414 . . . . . . . . 9 ((𝑆𝑉𝑅𝑊) → {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩} ∈ V)
104 unexg 4474 . . . . . . . . 9 (({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∈ V ∧ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩} ∈ V) → ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}) ∈ V)
10590, 103, 104syl2anc 411 . . . . . . . 8 ((𝑆𝑉𝑅𝑊) → ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}) ∈ V)
106 unexg 4474 . . . . . . . 8 ((({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∈ V ∧ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}) ∈ V) → (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})) ∈ V)
10760, 105, 106syl2anc 411 . . . . . . 7 ((𝑆𝑉𝑅𝑊) → (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})) ∈ V)
108107alrimiv 1885 . . . . . 6 ((𝑆𝑉𝑅𝑊) → ∀(({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})) ∈ V)
109 csbexga 4157 . . . . . 6 (((𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) ∈ V ∧ ∀(({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})) ∈ V) → (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})) ∈ V)
11018, 108, 109sylancr 414 . . . . 5 ((𝑆𝑉𝑅𝑊) → (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})) ∈ V)
111110alrimiv 1885 . . . 4 ((𝑆𝑉𝑅𝑊) → ∀𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})) ∈ V)
112 csbexga 4157 . . . 4 ((X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∈ V ∧ ∀𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})) ∈ V) → X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})) ∈ V)
11316, 111, 112syl2anc 411 . . 3 ((𝑆𝑉𝑅𝑊) → X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})) ∈ V)
114 dmeq 4862 . . . . . . . . 9 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
115114ixpeq1d 6764 . . . . . . . 8 (𝑟 = 𝑅X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) = X𝑥 ∈ dom 𝑅(Base‘(𝑟𝑥)))
116 fveq1 5553 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑟𝑥) = (𝑅𝑥))
117116fveq2d 5558 . . . . . . . . 9 (𝑟 = 𝑅 → (Base‘(𝑟𝑥)) = (Base‘(𝑅𝑥)))
118117ixpeq2dv 6768 . . . . . . . 8 (𝑟 = 𝑅X𝑥 ∈ dom 𝑅(Base‘(𝑟𝑥)) = X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)))
119115, 118eqtrd 2226 . . . . . . 7 (𝑟 = 𝑅X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) = X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)))
120119adantl 277 . . . . . 6 ((𝑠 = 𝑆𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) = X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)))
121120csbeq1d 3087 . . . . 5 ((𝑠 = 𝑆𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})) = X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
122114adantl 277 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑟 = 𝑅) → dom 𝑟 = dom 𝑅)
123122ixpeq1d 6764 . . . . . . . . . 10 ((𝑠 = 𝑆𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) = X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)))
124 simpr 110 . . . . . . . . . . . . . 14 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑟 = 𝑅)
125124fveq1d 5556 . . . . . . . . . . . . 13 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑟𝑥) = (𝑅𝑥))
126125fveq2d 5558 . . . . . . . . . . . 12 ((𝑠 = 𝑆𝑟 = 𝑅) → (Hom ‘(𝑟𝑥)) = (Hom ‘(𝑅𝑥)))
127126oveqd 5935 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑟 = 𝑅) → ((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) = ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))
128127ixpeq2dv 6768 . . . . . . . . . 10 ((𝑠 = 𝑆𝑟 = 𝑅) → X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) = X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))
129123, 128eqtrd 2226 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) = X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))
130129mpoeq3dv 5984 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) = (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))))
131130csbeq1d 3087 . . . . . . 7 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})) = (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
132 eqidd 2194 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑟 = 𝑅) → ⟨(Base‘ndx), 𝑣⟩ = ⟨(Base‘ndx), 𝑣⟩)
133125fveq2d 5558 . . . . . . . . . . . . . . 15 ((𝑠 = 𝑆𝑟 = 𝑅) → (+g‘(𝑟𝑥)) = (+g‘(𝑅𝑥)))
134133oveqd 5935 . . . . . . . . . . . . . 14 ((𝑠 = 𝑆𝑟 = 𝑅) → ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥)) = ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))
135122, 134mpteq12dv 4111 . . . . . . . . . . . . 13 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))) = (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))
136135mpoeq3dv 5984 . . . . . . . . . . . 12 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥)))) = (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))))
137136opeq2d 3811 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑟 = 𝑅) → ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩ = ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩)
138125fveq2d 5558 . . . . . . . . . . . . . . 15 ((𝑠 = 𝑆𝑟 = 𝑅) → (.r‘(𝑟𝑥)) = (.r‘(𝑅𝑥)))
139138oveqd 5935 . . . . . . . . . . . . . 14 ((𝑠 = 𝑆𝑟 = 𝑅) → ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥)) = ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))
140122, 139mpteq12dv 4111 . . . . . . . . . . . . 13 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))) = (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))
141140mpoeq3dv 5984 . . . . . . . . . . . 12 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥)))) = (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))))
142141opeq2d 3811 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑟 = 𝑅) → ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩ = ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩)
143132, 137, 142tpeq123d 3710 . . . . . . . . . 10 ((𝑠 = 𝑆𝑟 = 𝑅) → {⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} = {⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩})
144 simpl 109 . . . . . . . . . . . 12 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑠 = 𝑆)
145144opeq2d 3811 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑟 = 𝑅) → ⟨(Scalar‘ndx), 𝑠⟩ = ⟨(Scalar‘ndx), 𝑆⟩)
146144fveq2d 5558 . . . . . . . . . . . . 13 ((𝑠 = 𝑆𝑟 = 𝑅) → (Base‘𝑠) = (Base‘𝑆))
147 eqidd 2194 . . . . . . . . . . . . 13 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑣 = 𝑣)
148125fveq2d 5558 . . . . . . . . . . . . . . 15 ((𝑠 = 𝑆𝑟 = 𝑅) → ( ·𝑠 ‘(𝑟𝑥)) = ( ·𝑠 ‘(𝑅𝑥)))
149148oveqd 5935 . . . . . . . . . . . . . 14 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥)) = (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))
150122, 149mpteq12dv 4111 . . . . . . . . . . . . 13 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))) = (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))
151146, 147, 150mpoeq123dv 5980 . . . . . . . . . . . 12 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥)))) = (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))
152151opeq2d 3811 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑟 = 𝑅) → ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩ = ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩)
153125fveq2d 5558 . . . . . . . . . . . . . . . 16 ((𝑠 = 𝑆𝑟 = 𝑅) → (·𝑖‘(𝑟𝑥)) = (·𝑖‘(𝑅𝑥)))
154153oveqd 5935 . . . . . . . . . . . . . . 15 ((𝑠 = 𝑆𝑟 = 𝑅) → ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)) = ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))
155122, 154mpteq12dv 4111 . . . . . . . . . . . . . 14 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥))) = (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))
156144, 155oveq12d 5936 . . . . . . . . . . . . 13 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))) = (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))
157156mpoeq3dv 5984 . . . . . . . . . . . 12 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥))))) = (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))))
158157opeq2d 3811 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑟 = 𝑅) → ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩ = ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩)
159145, 152, 158tpeq123d 3710 . . . . . . . . . 10 ((𝑠 = 𝑆𝑟 = 𝑅) → {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩} = {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩})
160143, 159uneq12d 3314 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → ({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) = ({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}))
161124coeq2d 4824 . . . . . . . . . . . . 13 ((𝑠 = 𝑆𝑟 = 𝑅) → (TopOpen ∘ 𝑟) = (TopOpen ∘ 𝑅))
162161fveq2d 5558 . . . . . . . . . . . 12 ((𝑠 = 𝑆𝑟 = 𝑅) → (∏t‘(TopOpen ∘ 𝑟)) = (∏t‘(TopOpen ∘ 𝑅)))
163162opeq2d 3811 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑟 = 𝑅) → ⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩ = ⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩)
164125fveq2d 5558 . . . . . . . . . . . . . . . 16 ((𝑠 = 𝑆𝑟 = 𝑅) → (le‘(𝑟𝑥)) = (le‘(𝑅𝑥)))
165164breqd 4040 . . . . . . . . . . . . . . 15 ((𝑠 = 𝑆𝑟 = 𝑅) → ((𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥) ↔ (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥)))
166122, 165raleqbidv 2706 . . . . . . . . . . . . . 14 ((𝑠 = 𝑆𝑟 = 𝑅) → (∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥) ↔ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥)))
167166anbi2d 464 . . . . . . . . . . . . 13 ((𝑠 = 𝑆𝑟 = 𝑅) → (({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥)) ↔ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))))
168167opabbidv 4095 . . . . . . . . . . . 12 ((𝑠 = 𝑆𝑟 = 𝑅) → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
169168opeq2d 3811 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑟 = 𝑅) → ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩ = ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩)
170125fveq2d 5558 . . . . . . . . . . . . . . . . . 18 ((𝑠 = 𝑆𝑟 = 𝑅) → (dist‘(𝑟𝑥)) = (dist‘(𝑅𝑥)))
171170oveqd 5935 . . . . . . . . . . . . . . . . 17 ((𝑠 = 𝑆𝑟 = 𝑅) → ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥)) = ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥)))
172122, 171mpteq12dv 4111 . . . . . . . . . . . . . . . 16 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) = (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))))
173172rneqd 4891 . . . . . . . . . . . . . . 15 ((𝑠 = 𝑆𝑟 = 𝑅) → ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) = ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))))
174173uneq1d 3312 . . . . . . . . . . . . . 14 ((𝑠 = 𝑆𝑟 = 𝑅) → (ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}) = (ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}))
175174supeq1d 7046 . . . . . . . . . . . . 13 ((𝑠 = 𝑆𝑟 = 𝑅) → sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ) = sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))
176175mpoeq3dv 5984 . . . . . . . . . . . 12 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )) = (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )))
177176opeq2d 3811 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑟 = 𝑅) → ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩ = ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩)
178163, 169, 177tpeq123d 3710 . . . . . . . . . 10 ((𝑠 = 𝑆𝑟 = 𝑅) → {⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} = {⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩})
179125fveq2d 5558 . . . . . . . . . . . . . . . . 17 ((𝑠 = 𝑆𝑟 = 𝑅) → (comp‘(𝑟𝑥)) = (comp‘(𝑅𝑥)))
180179oveqd 5935 . . . . . . . . . . . . . . . 16 ((𝑠 = 𝑆𝑟 = 𝑅) → (⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥)) = (⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥)))
181180oveqd 5935 . . . . . . . . . . . . . . 15 ((𝑠 = 𝑆𝑟 = 𝑅) → ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)) = ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))
182122, 181mpteq12dv 4111 . . . . . . . . . . . . . 14 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥))) = (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))
183182mpoeq3dv 5984 . . . . . . . . . . . . 13 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))) = (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))
184183mpoeq3dv 5984 . . . . . . . . . . . 12 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥))))) = (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))))
185184opeq2d 3811 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑟 = 𝑅) → ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩ = ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩)
186185preq2d 3702 . . . . . . . . . 10 ((𝑠 = 𝑆𝑟 = 𝑅) → {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩} = {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})
187178, 186uneq12d 3314 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}) = ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}))
188160, 187uneq12d 3314 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})) = (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
189188csbeq2dv 3106 . . . . . . 7 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})) = (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
190131, 189eqtrd 2226 . . . . . 6 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})) = (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
191190csbeq2dv 3106 . . . . 5 ((𝑠 = 𝑆𝑟 = 𝑅) → X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})) = X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
192121, 191eqtrd 2226 . . . 4 ((𝑠 = 𝑆𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})) = X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
193 df-prds 12878 . . . 4 Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
194192, 193ovmpoga 6048 . . 3 ((𝑆 ∈ V ∧ 𝑅 ∈ V ∧ X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})) ∈ V) → (𝑆Xs𝑅) = X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
1952, 4, 113, 194syl3anc 1249 . 2 ((𝑆𝑉𝑅𝑊) → (𝑆Xs𝑅) = X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
196195, 113eqeltrd 2270 1 ((𝑆𝑉𝑅𝑊) → (𝑆Xs𝑅) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1362   = wceq 1364  wcel 2164  wral 2472  Vcvv 2760  csb 3080  cun 3151  wss 3153  {csn 3618  {cpr 3619  {ctp 3620  cop 3621   class class class wbr 4029  {copab 4089  cmpt 4090   × cxp 4657  dom cdm 4659  ran crn 4660  ccom 4663  Fun wfun 5248   Fn wfn 5249  cfv 5254  (class class class)co 5918  cmpo 5920  1st c1st 6191  2nd c2nd 6192  Xcixp 6752  supcsup 7041  0cc0 7872  *cxr 8053   < clt 8054  cn 8982  ndxcnx 12615  Slot cslot 12617  Basecbs 12618  +gcplusg 12695  .rcmulr 12696  Scalarcsca 12698   ·𝑠 cvsca 12699  ·𝑖cip 12700  TopSetcts 12701  lecple 12702  distcds 12704  Hom chom 12706  compcco 12707  TopOpenctopn 12851  tcpt 12866   Σg cgsu 12868  Xscprds 12876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-ixp 6753  df-sup 7043  df-sub 8192  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-n0 9241  df-dec 9449  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-mulr 12709  df-sca 12711  df-vsca 12712  df-ip 12713  df-tset 12714  df-ple 12715  df-ds 12717  df-hom 12719  df-cco 12720  df-rest 12852  df-topn 12853  df-topgen 12871  df-pt 12872  df-prds 12878
This theorem is referenced by:  xpsval  12935
  Copyright terms: Public domain W3C validator