Step | Hyp | Ref
| Expression |
1 | | elex 2749 |
. . . 4
β’ (π β π β π β V) |
2 | 1 | adantr 276 |
. . 3
β’ ((π β π β§ π
β π) β π β V) |
3 | | elex 2749 |
. . . 4
β’ (π
β π β π
β V) |
4 | 3 | adantl 277 |
. . 3
β’ ((π β π β§ π
β π) β π
β V) |
5 | | dmexg 4892 |
. . . . 5
β’ (π
β π β dom π
β V) |
6 | | basfn 12520 |
. . . . . . 7
β’ Base Fn
V |
7 | | simpr 110 |
. . . . . . . 8
β’ ((π β π β§ π
β π) β π
β π) |
8 | | vex 2741 |
. . . . . . . 8
β’ π₯ β V |
9 | | fvexg 5535 |
. . . . . . . 8
β’ ((π
β π β§ π₯ β V) β (π
βπ₯) β V) |
10 | 7, 8, 9 | sylancl 413 |
. . . . . . 7
β’ ((π β π β§ π
β π) β (π
βπ₯) β V) |
11 | | funfvex 5533 |
. . . . . . . 8
β’ ((Fun
Base β§ (π
βπ₯) β dom Base) β
(Baseβ(π
βπ₯)) β V) |
12 | 11 | funfni 5317 |
. . . . . . 7
β’ ((Base Fn
V β§ (π
βπ₯) β V) β
(Baseβ(π
βπ₯)) β V) |
13 | 6, 10, 12 | sylancr 414 |
. . . . . 6
β’ ((π β π β§ π
β π) β (Baseβ(π
βπ₯)) β V) |
14 | 13 | ralrimivw 2551 |
. . . . 5
β’ ((π β π β§ π
β π) β βπ₯ β dom π
(Baseβ(π
βπ₯)) β V) |
15 | | ixpexgg 6722 |
. . . . 5
β’ ((dom
π
β V β§
βπ₯ β dom π
(Baseβ(π
βπ₯)) β V) β Xπ₯ β
dom π
(Baseβ(π
βπ₯)) β V) |
16 | 5, 14, 15 | syl2an2 594 |
. . . 4
β’ ((π β π β§ π
β π) β Xπ₯ β dom π
(Baseβ(π
βπ₯)) β V) |
17 | | vex 2741 |
. . . . . . 7
β’ π£ β V |
18 | 17, 17 | mpoex 6215 |
. . . . . 6
β’ (π β π£, π β π£ β¦ Xπ₯ β dom π
((πβπ₯)(Hom β(π
βπ₯))(πβπ₯))) β V |
19 | | basendxnn 12518 |
. . . . . . . . . . 11
β’
(Baseβndx) β β |
20 | 17 | a1i 9 |
. . . . . . . . . . 11
β’ ((π β π β§ π
β π) β π£ β V) |
21 | | opexg 4229 |
. . . . . . . . . . 11
β’
(((Baseβndx) β β β§ π£ β V) β β¨(Baseβndx),
π£β© β
V) |
22 | 19, 20, 21 | sylancr 414 |
. . . . . . . . . 10
β’ ((π β π β§ π
β π) β β¨(Baseβndx), π£β© β
V) |
23 | | plusgndxnn 12570 |
. . . . . . . . . . . . 13
β’
(+gβndx) β β |
24 | 23 | elexi 2750 |
. . . . . . . . . . . 12
β’
(+gβndx) β V |
25 | 17, 17 | mpoex 6215 |
. . . . . . . . . . . 12
β’ (π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯)))) β V |
26 | 24, 25 | opex 4230 |
. . . . . . . . . . 11
β’
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β© β V |
27 | 26 | a1i 9 |
. . . . . . . . . 10
β’ ((π β π β§ π
β π) β β¨(+gβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β© β V) |
28 | | mulrslid 12590 |
. . . . . . . . . . . . . 14
β’
(.r = Slot (.rβndx) β§
(.rβndx) β β) |
29 | 28 | simpri 113 |
. . . . . . . . . . . . 13
β’
(.rβndx) β β |
30 | 29 | elexi 2750 |
. . . . . . . . . . . 12
β’
(.rβndx) β V |
31 | 17, 17 | mpoex 6215 |
. . . . . . . . . . . 12
β’ (π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯)))) β V |
32 | 30, 31 | opex 4230 |
. . . . . . . . . . 11
β’
β¨(.rβndx), (π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β© β V |
33 | 32 | a1i 9 |
. . . . . . . . . 10
β’ ((π β π β§ π
β π) β β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β© β V) |
34 | | tpexg 4445 |
. . . . . . . . . 10
β’
((β¨(Baseβndx), π£β© β V β§
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β© β V β§
β¨(.rβndx), (π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β© β V) β
{β¨(Baseβndx), π£β©, β¨(+gβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β©} β V) |
35 | 22, 27, 33, 34 | syl3anc 1238 |
. . . . . . . . 9
β’ ((π β π β§ π
β π) β {β¨(Baseβndx), π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β©} β V) |
36 | | scaslid 12611 |
. . . . . . . . . . . 12
β’ (Scalar =
Slot (Scalarβndx) β§ (Scalarβndx) β
β) |
37 | 36 | simpri 113 |
. . . . . . . . . . 11
β’
(Scalarβndx) β β |
38 | | simpl 109 |
. . . . . . . . . . 11
β’ ((π β π β§ π
β π) β π β π) |
39 | | opexg 4229 |
. . . . . . . . . . 11
β’
(((Scalarβndx) β β β§ π β π) β β¨(Scalarβndx), πβ© β
V) |
40 | 37, 38, 39 | sylancr 414 |
. . . . . . . . . 10
β’ ((π β π β§ π
β π) β β¨(Scalarβndx), πβ© β
V) |
41 | | vscaslid 12621 |
. . . . . . . . . . . 12
β’ (
Β·π = Slot (
Β·π βndx) β§ (
Β·π βndx) β
β) |
42 | 41 | simpri 113 |
. . . . . . . . . . 11
β’ (
Β·π βndx) β β |
43 | 38 | elexd 2751 |
. . . . . . . . . . . . 13
β’ ((π β π β§ π
β π) β π β V) |
44 | | funfvex 5533 |
. . . . . . . . . . . . . 14
β’ ((Fun
Base β§ π β dom
Base) β (Baseβπ)
β V) |
45 | 44 | funfni 5317 |
. . . . . . . . . . . . 13
β’ ((Base Fn
V β§ π β V) β
(Baseβπ) β
V) |
46 | 6, 43, 45 | sylancr 414 |
. . . . . . . . . . . 12
β’ ((π β π β§ π
β π) β (Baseβπ) β V) |
47 | | mpoexga 6213 |
. . . . . . . . . . . 12
β’
(((Baseβπ)
β V β§ π£ β V)
β (π β
(Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯)))) β V) |
48 | 46, 17, 47 | sylancl 413 |
. . . . . . . . . . 11
β’ ((π β π β§ π
β π) β (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯)))) β V) |
49 | | opexg 4229 |
. . . . . . . . . . 11
β’ (((
Β·π βndx) β β β§ (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯)))) β V) β β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β© β V) |
50 | 42, 48, 49 | sylancr 414 |
. . . . . . . . . 10
β’ ((π β π β§ π
β π) β β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β© β V) |
51 | | ipslid 12629 |
. . . . . . . . . . . . . 14
β’
(Β·π = Slot
(Β·πβndx) β§
(Β·πβndx) β
β) |
52 | 51 | simpri 113 |
. . . . . . . . . . . . 13
β’
(Β·πβndx) β
β |
53 | 52 | elexi 2750 |
. . . . . . . . . . . 12
β’
(Β·πβndx) β
V |
54 | 17, 17 | mpoex 6215 |
. . . . . . . . . . . 12
β’ (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯))))) β V |
55 | 53, 54 | opex 4230 |
. . . . . . . . . . 11
β’
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β© β V |
56 | 55 | a1i 9 |
. . . . . . . . . 10
β’ ((π β π β§ π
β π) β
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β© β V) |
57 | | tpexg 4445 |
. . . . . . . . . 10
β’
((β¨(Scalarβndx), πβ© β V β§ β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β© β V β§
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β© β V) β
{β¨(Scalarβndx), πβ©, β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©} β V) |
58 | 40, 50, 56, 57 | syl3anc 1238 |
. . . . . . . . 9
β’ ((π β π β§ π
β π) β {β¨(Scalarβndx), πβ©, β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©} β V) |
59 | | unexg 4444 |
. . . . . . . . 9
β’
(({β¨(Baseβndx), π£β©, β¨(+gβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β©} β V β§
{β¨(Scalarβndx), πβ©, β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©} β V) β
({β¨(Baseβndx), π£β©, β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx), πβ©, β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©}) β V) |
60 | 35, 58, 59 | syl2anc 411 |
. . . . . . . 8
β’ ((π β π β§ π
β π) β ({β¨(Baseβndx), π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx),
πβ©, β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©}) β V) |
61 | | tsetndxnn 12644 |
. . . . . . . . . . 11
β’
(TopSetβndx) β β |
62 | | topnfn 12693 |
. . . . . . . . . . . . . 14
β’ TopOpen
Fn V |
63 | | fnfun 5314 |
. . . . . . . . . . . . . 14
β’ (TopOpen
Fn V β Fun TopOpen) |
64 | 62, 63 | ax-mp 5 |
. . . . . . . . . . . . 13
β’ Fun
TopOpen |
65 | | cofunexg 6110 |
. . . . . . . . . . . . 13
β’ ((Fun
TopOpen β§ π
β
π) β (TopOpen β
π
) β
V) |
66 | 64, 7, 65 | sylancr 414 |
. . . . . . . . . . . 12
β’ ((π β π β§ π
β π) β (TopOpen β π
) β V) |
67 | | ptex 12713 |
. . . . . . . . . . . 12
β’ ((TopOpen
β π
) β V β
(βtβ(TopOpen β π
)) β V) |
68 | 66, 67 | syl 14 |
. . . . . . . . . . 11
β’ ((π β π β§ π
β π) β (βtβ(TopOpen
β π
)) β
V) |
69 | | opexg 4229 |
. . . . . . . . . . 11
β’
(((TopSetβndx) β β β§
(βtβ(TopOpen β π
)) β V) β
β¨(TopSetβndx), (βtβ(TopOpen β π
))β© β
V) |
70 | 61, 68, 69 | sylancr 414 |
. . . . . . . . . 10
β’ ((π β π β§ π
β π) β β¨(TopSetβndx),
(βtβ(TopOpen β π
))β© β V) |
71 | | plendxnn 12658 |
. . . . . . . . . . 11
β’
(leβndx) β β |
72 | | vex 2741 |
. . . . . . . . . . . . . . . 16
β’ π β V |
73 | | vex 2741 |
. . . . . . . . . . . . . . . 16
β’ π β V |
74 | 72, 73 | prss 3749 |
. . . . . . . . . . . . . . 15
β’ ((π β π£ β§ π β π£) β {π, π} β π£) |
75 | 74 | anbi1i 458 |
. . . . . . . . . . . . . 14
β’ (((π β π£ β§ π β π£) β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯)) β ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))) |
76 | 75 | opabbii 4071 |
. . . . . . . . . . . . 13
β’
{β¨π, πβ© β£ ((π β π£ β§ π β π£) β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))} = {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))} |
77 | 17, 17 | xpex 4742 |
. . . . . . . . . . . . . 14
β’ (π£ Γ π£) β V |
78 | | opabssxp 4701 |
. . . . . . . . . . . . . 14
β’
{β¨π, πβ© β£ ((π β π£ β§ π β π£) β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))} β (π£ Γ π£) |
79 | 77, 78 | ssexi 4142 |
. . . . . . . . . . . . 13
β’
{β¨π, πβ© β£ ((π β π£ β§ π β π£) β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))} β V |
80 | 76, 79 | eqeltrri 2251 |
. . . . . . . . . . . 12
β’
{β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))} β V |
81 | 80 | a1i 9 |
. . . . . . . . . . 11
β’ ((π β π β§ π
β π) β {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))} β V) |
82 | | opexg 4229 |
. . . . . . . . . . 11
β’
(((leβndx) β β β§ {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))} β V) β β¨(leβndx),
{β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β© β V) |
83 | 71, 81, 82 | sylancr 414 |
. . . . . . . . . 10
β’ ((π β π β§ π
β π) β β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β© β V) |
84 | | dsndxnn 12669 |
. . . . . . . . . . . 12
β’
(distβndx) β β |
85 | 17, 17 | mpoex 6215 |
. . . . . . . . . . . 12
β’ (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, < ))
β V |
86 | | opexg 4229 |
. . . . . . . . . . . 12
β’
(((distβndx) β β β§ (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, < ))
β V) β β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β© β V) |
87 | 84, 85, 86 | mp2an 426 |
. . . . . . . . . . 11
β’
β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β© β V |
88 | 87 | a1i 9 |
. . . . . . . . . 10
β’ ((π β π β§ π
β π) β β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β© β V) |
89 | | tpexg 4445 |
. . . . . . . . . 10
β’
((β¨(TopSetβndx), (βtβ(TopOpen β
π
))β© β V β§
β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β© β V β§
β¨(distβndx), (π
β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β© β V) β {β¨(TopSetβndx),
(βtβ(TopOpen β π
))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} β V) |
90 | 70, 83, 88, 89 | syl3anc 1238 |
. . . . . . . . 9
β’ ((π β π β§ π
β π) β {β¨(TopSetβndx),
(βtβ(TopOpen β π
))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} β V) |
91 | | homslid 12685 |
. . . . . . . . . . . 12
β’ (Hom =
Slot (Hom βndx) β§ (Hom βndx) β β) |
92 | 91 | simpri 113 |
. . . . . . . . . . 11
β’ (Hom
βndx) β β |
93 | | vex 2741 |
. . . . . . . . . . 11
β’ β β V |
94 | | opexg 4229 |
. . . . . . . . . . 11
β’ (((Hom
βndx) β β β§ β β V) β β¨(Hom βndx),
ββ© β
V) |
95 | 92, 93, 94 | mp2an 426 |
. . . . . . . . . 10
β’
β¨(Hom βndx), ββ© β V |
96 | | ccoslid 12687 |
. . . . . . . . . . . . 13
β’ (comp =
Slot (compβndx) β§ (compβndx) β β) |
97 | 96 | simpri 113 |
. . . . . . . . . . . 12
β’
(compβndx) β β |
98 | 77, 17 | mpoex 6215 |
. . . . . . . . . . . 12
β’ (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯))))) β V |
99 | | opexg 4229 |
. . . . . . . . . . . 12
β’
(((compβndx) β β β§ (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯))))) β V) β
β¨(compβndx), (π
β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β© β V) |
100 | 97, 98, 99 | mp2an 426 |
. . . . . . . . . . 11
β’
β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β© β V |
101 | 100 | a1i 9 |
. . . . . . . . . 10
β’ ((π β π β§ π
β π) β β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β© β V) |
102 | | prexg 4212 |
. . . . . . . . . 10
β’
((β¨(Hom βndx), ββ© β V β§ β¨(compβndx),
(π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β© β V) β {β¨(Hom
βndx), ββ©,
β¨(compβndx), (π
β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©} β V) |
103 | 95, 101, 102 | sylancr 414 |
. . . . . . . . 9
β’ ((π β π β§ π
β π) β {β¨(Hom βndx), ββ©, β¨(compβndx),
(π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©} β V) |
104 | | unexg 4444 |
. . . . . . . . 9
β’
(({β¨(TopSetβndx), (βtβ(TopOpen β
π
))β©,
β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} β V β§ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©} β V) β
({β¨(TopSetβndx), (βtβ(TopOpen β π
))β©, β¨(leβndx),
{β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©}) β V) |
105 | 90, 103, 104 | syl2anc 411 |
. . . . . . . 8
β’ ((π β π β§ π
β π) β ({β¨(TopSetβndx),
(βtβ(TopOpen β π
))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©}) β V) |
106 | | unexg 4444 |
. . . . . . . 8
β’
((({β¨(Baseβndx), π£β©, β¨(+gβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx),
πβ©, β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©}) β V β§
({β¨(TopSetβndx), (βtβ(TopOpen β π
))β©, β¨(leβndx),
{β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©}) β V) β
(({β¨(Baseβndx), π£β©, β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx), πβ©, β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(βtβ(TopOpen β π
))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©})) β V) |
107 | 60, 105, 106 | syl2anc 411 |
. . . . . . 7
β’ ((π β π β§ π
β π) β (({β¨(Baseβndx), π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx),
πβ©, β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(βtβ(TopOpen β π
))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©})) β V) |
108 | 107 | alrimiv 1874 |
. . . . . 6
β’ ((π β π β§ π
β π) β ββ(({β¨(Baseβndx), π£β©, β¨(+gβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx),
πβ©, β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(βtβ(TopOpen β π
))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©})) β V) |
109 | | csbexga 4132 |
. . . . . 6
β’ (((π β π£, π β π£ β¦ Xπ₯ β dom π
((πβπ₯)(Hom β(π
βπ₯))(πβπ₯))) β V β§ ββ(({β¨(Baseβndx), π£β©, β¨(+gβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx),
πβ©, β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(βtβ(TopOpen β π
))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©})) β V) β
β¦(π β π£, π β π£ β¦ Xπ₯ β dom π
((πβπ₯)(Hom β(π
βπ₯))(πβπ₯))) / ββ¦(({β¨(Baseβndx), π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx), πβ©, β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(βtβ(TopOpen β π
))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©})) β V) |
110 | 18, 108, 109 | sylancr 414 |
. . . . 5
β’ ((π β π β§ π
β π) β β¦(π β π£, π β π£ β¦ Xπ₯ β dom π
((πβπ₯)(Hom β(π
βπ₯))(πβπ₯))) / ββ¦(({β¨(Baseβndx),
π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx),
πβ©, β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(βtβ(TopOpen β π
))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©})) β V) |
111 | 110 | alrimiv 1874 |
. . . 4
β’ ((π β π β§ π
β π) β βπ£β¦(π β π£, π β π£ β¦ Xπ₯ β dom π
((πβπ₯)(Hom β(π
βπ₯))(πβπ₯))) / ββ¦(({β¨(Baseβndx),
π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx),
πβ©, β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(βtβ(TopOpen β π
))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©})) β V) |
112 | | csbexga 4132 |
. . . 4
β’ ((Xπ₯ β
dom π
(Baseβ(π
βπ₯)) β V β§ βπ£β¦(π β π£, π β π£ β¦ Xπ₯ β dom π
((πβπ₯)(Hom β(π
βπ₯))(πβπ₯))) / ββ¦(({β¨(Baseβndx),
π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx),
πβ©, β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(βtβ(TopOpen β π
))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©})) β V) β
β¦Xπ₯ β dom π
(Baseβ(π
βπ₯)) / π£β¦β¦(π β π£, π β π£ β¦ Xπ₯ β dom π
((πβπ₯)(Hom β(π
βπ₯))(πβπ₯))) / ββ¦(({β¨(Baseβndx), π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx), πβ©, β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(βtβ(TopOpen β π
))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©})) β V) |
113 | 16, 111, 112 | syl2anc 411 |
. . 3
β’ ((π β π β§ π
β π) β β¦Xπ₯ β
dom π
(Baseβ(π
βπ₯)) / π£β¦β¦(π β π£, π β π£ β¦ Xπ₯ β dom π
((πβπ₯)(Hom β(π
βπ₯))(πβπ₯))) / ββ¦(({β¨(Baseβndx),
π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx),
πβ©, β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(βtβ(TopOpen β π
))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©})) β V) |
114 | | dmeq 4828 |
. . . . . . . . 9
β’ (π = π
β dom π = dom π
) |
115 | 114 | ixpeq1d 6710 |
. . . . . . . 8
β’ (π = π
β Xπ₯ β dom π(Baseβ(πβπ₯)) = Xπ₯ β dom π
(Baseβ(πβπ₯))) |
116 | | fveq1 5515 |
. . . . . . . . . 10
β’ (π = π
β (πβπ₯) = (π
βπ₯)) |
117 | 116 | fveq2d 5520 |
. . . . . . . . 9
β’ (π = π
β (Baseβ(πβπ₯)) = (Baseβ(π
βπ₯))) |
118 | 117 | ixpeq2dv 6714 |
. . . . . . . 8
β’ (π = π
β Xπ₯ β dom π
(Baseβ(πβπ₯)) = Xπ₯ β dom π
(Baseβ(π
βπ₯))) |
119 | 115, 118 | eqtrd 2210 |
. . . . . . 7
β’ (π = π
β Xπ₯ β dom π(Baseβ(πβπ₯)) = Xπ₯ β dom π
(Baseβ(π
βπ₯))) |
120 | 119 | adantl 277 |
. . . . . 6
β’ ((π = π β§ π = π
) β Xπ₯ β dom π(Baseβ(πβπ₯)) = Xπ₯ β dom π
(Baseβ(π
βπ₯))) |
121 | 120 | csbeq1d 3065 |
. . . . 5
β’ ((π = π β§ π = π
) β β¦Xπ₯ β
dom π(Baseβ(πβπ₯)) / π£β¦β¦(π β π£, π β π£ β¦ Xπ₯ β dom π((πβπ₯)(Hom β(πβπ₯))(πβπ₯))) / ββ¦(({β¨(Baseβndx),
π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(+gβ(πβπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(.rβ(πβπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx),
π β©, β¨(
Β·π βndx), (π β (Baseβπ ), π β π£ β¦ (π₯ β dom π β¦ (π( Β·π
β(πβπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π β¦ ((πβπ₯)(Β·πβ(πβπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(βtβ(TopOpen β π))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π(πβπ₯)(leβ(πβπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π β¦ ((πβπ₯)(distβ(πβπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(πβπ₯))(πβπ₯))(πβπ₯)))))β©})) = β¦Xπ₯ β dom
π
(Baseβ(π
βπ₯)) / π£β¦β¦(π β π£, π β π£ β¦ Xπ₯ β dom π((πβπ₯)(Hom β(πβπ₯))(πβπ₯))) / ββ¦(({β¨(Baseβndx), π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(+gβ(πβπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(.rβ(πβπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx), π β©, β¨(
Β·π βndx), (π β (Baseβπ ), π β π£ β¦ (π₯ β dom π β¦ (π( Β·π
β(πβπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π β¦ ((πβπ₯)(Β·πβ(πβπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(βtβ(TopOpen β π))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π(πβπ₯)(leβ(πβπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π β¦ ((πβπ₯)(distβ(πβπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(πβπ₯))(πβπ₯))(πβπ₯)))))β©}))) |
122 | 114 | adantl 277 |
. . . . . . . . . . 11
β’ ((π = π β§ π = π
) β dom π = dom π
) |
123 | 122 | ixpeq1d 6710 |
. . . . . . . . . 10
β’ ((π = π β§ π = π
) β Xπ₯ β dom π((πβπ₯)(Hom β(πβπ₯))(πβπ₯)) = Xπ₯ β dom π
((πβπ₯)(Hom β(πβπ₯))(πβπ₯))) |
124 | | simpr 110 |
. . . . . . . . . . . . . 14
β’ ((π = π β§ π = π
) β π = π
) |
125 | 124 | fveq1d 5518 |
. . . . . . . . . . . . 13
β’ ((π = π β§ π = π
) β (πβπ₯) = (π
βπ₯)) |
126 | 125 | fveq2d 5520 |
. . . . . . . . . . . 12
β’ ((π = π β§ π = π
) β (Hom β(πβπ₯)) = (Hom β(π
βπ₯))) |
127 | 126 | oveqd 5892 |
. . . . . . . . . . 11
β’ ((π = π β§ π = π
) β ((πβπ₯)(Hom β(πβπ₯))(πβπ₯)) = ((πβπ₯)(Hom β(π
βπ₯))(πβπ₯))) |
128 | 127 | ixpeq2dv 6714 |
. . . . . . . . . 10
β’ ((π = π β§ π = π
) β Xπ₯ β dom π
((πβπ₯)(Hom β(πβπ₯))(πβπ₯)) = Xπ₯ β dom π
((πβπ₯)(Hom β(π
βπ₯))(πβπ₯))) |
129 | 123, 128 | eqtrd 2210 |
. . . . . . . . 9
β’ ((π = π β§ π = π
) β Xπ₯ β dom π((πβπ₯)(Hom β(πβπ₯))(πβπ₯)) = Xπ₯ β dom π
((πβπ₯)(Hom β(π
βπ₯))(πβπ₯))) |
130 | 129 | mpoeq3dv 5941 |
. . . . . . . 8
β’ ((π = π β§ π = π
) β (π β π£, π β π£ β¦ Xπ₯ β dom π((πβπ₯)(Hom β(πβπ₯))(πβπ₯))) = (π β π£, π β π£ β¦ Xπ₯ β dom π
((πβπ₯)(Hom β(π
βπ₯))(πβπ₯)))) |
131 | 130 | csbeq1d 3065 |
. . . . . . 7
β’ ((π = π β§ π = π
) β β¦(π β π£, π β π£ β¦ Xπ₯ β dom π((πβπ₯)(Hom β(πβπ₯))(πβπ₯))) / ββ¦(({β¨(Baseβndx),
π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(+gβ(πβπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(.rβ(πβπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx),
π β©, β¨(
Β·π βndx), (π β (Baseβπ ), π β π£ β¦ (π₯ β dom π β¦ (π( Β·π
β(πβπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π β¦ ((πβπ₯)(Β·πβ(πβπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(βtβ(TopOpen β π))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π(πβπ₯)(leβ(πβπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π β¦ ((πβπ₯)(distβ(πβπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(πβπ₯))(πβπ₯))(πβπ₯)))))β©})) = β¦(π β π£, π β π£ β¦ Xπ₯ β dom π
((πβπ₯)(Hom β(π
βπ₯))(πβπ₯))) / ββ¦(({β¨(Baseβndx), π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(+gβ(πβπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(.rβ(πβπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx), π β©, β¨(
Β·π βndx), (π β (Baseβπ ), π β π£ β¦ (π₯ β dom π β¦ (π( Β·π
β(πβπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π β¦ ((πβπ₯)(Β·πβ(πβπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(βtβ(TopOpen β π))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π(πβπ₯)(leβ(πβπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π β¦ ((πβπ₯)(distβ(πβπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(πβπ₯))(πβπ₯))(πβπ₯)))))β©}))) |
132 | | eqidd 2178 |
. . . . . . . . . . 11
β’ ((π = π β§ π = π
) β β¨(Baseβndx), π£β© = β¨(Baseβndx),
π£β©) |
133 | 125 | fveq2d 5520 |
. . . . . . . . . . . . . . 15
β’ ((π = π β§ π = π
) β (+gβ(πβπ₯)) = (+gβ(π
βπ₯))) |
134 | 133 | oveqd 5892 |
. . . . . . . . . . . . . 14
β’ ((π = π β§ π = π
) β ((πβπ₯)(+gβ(πβπ₯))(πβπ₯)) = ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))) |
135 | 122, 134 | mpteq12dv 4086 |
. . . . . . . . . . . . 13
β’ ((π = π β§ π = π
) β (π₯ β dom π β¦ ((πβπ₯)(+gβ(πβπ₯))(πβπ₯))) = (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯)))) |
136 | 135 | mpoeq3dv 5941 |
. . . . . . . . . . . 12
β’ ((π = π β§ π = π
) β (π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(+gβ(πβπ₯))(πβπ₯)))) = (π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))) |
137 | 136 | opeq2d 3786 |
. . . . . . . . . . 11
β’ ((π = π β§ π = π
) β β¨(+gβndx),
(π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(+gβ(πβπ₯))(πβπ₯))))β© = β¨(+gβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β©) |
138 | 125 | fveq2d 5520 |
. . . . . . . . . . . . . . 15
β’ ((π = π β§ π = π
) β (.rβ(πβπ₯)) = (.rβ(π
βπ₯))) |
139 | 138 | oveqd 5892 |
. . . . . . . . . . . . . 14
β’ ((π = π β§ π = π
) β ((πβπ₯)(.rβ(πβπ₯))(πβπ₯)) = ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))) |
140 | 122, 139 | mpteq12dv 4086 |
. . . . . . . . . . . . 13
β’ ((π = π β§ π = π
) β (π₯ β dom π β¦ ((πβπ₯)(.rβ(πβπ₯))(πβπ₯))) = (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯)))) |
141 | 140 | mpoeq3dv 5941 |
. . . . . . . . . . . 12
β’ ((π = π β§ π = π
) β (π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(.rβ(πβπ₯))(πβπ₯)))) = (π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))) |
142 | 141 | opeq2d 3786 |
. . . . . . . . . . 11
β’ ((π = π β§ π = π
) β β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(.rβ(πβπ₯))(πβπ₯))))β© = β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β©) |
143 | 132, 137,
142 | tpeq123d 3685 |
. . . . . . . . . 10
β’ ((π = π β§ π = π
) β {β¨(Baseβndx), π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(+gβ(πβπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(.rβ(πβπ₯))(πβπ₯))))β©} = {β¨(Baseβndx), π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β©}) |
144 | | simpl 109 |
. . . . . . . . . . . 12
β’ ((π = π β§ π = π
) β π = π) |
145 | 144 | opeq2d 3786 |
. . . . . . . . . . 11
β’ ((π = π β§ π = π
) β β¨(Scalarβndx), π β© =
β¨(Scalarβndx), πβ©) |
146 | 144 | fveq2d 5520 |
. . . . . . . . . . . . 13
β’ ((π = π β§ π = π
) β (Baseβπ ) = (Baseβπ)) |
147 | | eqidd 2178 |
. . . . . . . . . . . . 13
β’ ((π = π β§ π = π
) β π£ = π£) |
148 | 125 | fveq2d 5520 |
. . . . . . . . . . . . . . 15
β’ ((π = π β§ π = π
) β (
Β·π β(πβπ₯)) = ( Β·π
β(π
βπ₯))) |
149 | 148 | oveqd 5892 |
. . . . . . . . . . . . . 14
β’ ((π = π β§ π = π
) β (π( Β·π
β(πβπ₯))(πβπ₯)) = (π( Β·π
β(π
βπ₯))(πβπ₯))) |
150 | 122, 149 | mpteq12dv 4086 |
. . . . . . . . . . . . 13
β’ ((π = π β§ π = π
) β (π₯ β dom π β¦ (π( Β·π
β(πβπ₯))(πβπ₯))) = (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯)))) |
151 | 146, 147,
150 | mpoeq123dv 5937 |
. . . . . . . . . . . 12
β’ ((π = π β§ π = π
) β (π β (Baseβπ ), π β π£ β¦ (π₯ β dom π β¦ (π( Β·π
β(πβπ₯))(πβπ₯)))) = (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))) |
152 | 151 | opeq2d 3786 |
. . . . . . . . . . 11
β’ ((π = π β§ π = π
) β β¨(
Β·π βndx), (π β (Baseβπ ), π β π£ β¦ (π₯ β dom π β¦ (π( Β·π
β(πβπ₯))(πβπ₯))))β© = β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β©) |
153 | 125 | fveq2d 5520 |
. . . . . . . . . . . . . . . 16
β’ ((π = π β§ π = π
) β
(Β·πβ(πβπ₯)) =
(Β·πβ(π
βπ₯))) |
154 | 153 | oveqd 5892 |
. . . . . . . . . . . . . . 15
β’ ((π = π β§ π = π
) β ((πβπ₯)(Β·πβ(πβπ₯))(πβπ₯)) = ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯))) |
155 | 122, 154 | mpteq12dv 4086 |
. . . . . . . . . . . . . 14
β’ ((π = π β§ π = π
) β (π₯ β dom π β¦ ((πβπ₯)(Β·πβ(πβπ₯))(πβπ₯))) = (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))) |
156 | 144, 155 | oveq12d 5893 |
. . . . . . . . . . . . 13
β’ ((π = π β§ π = π
) β (π Ξ£g (π₯ β dom π β¦ ((πβπ₯)(Β·πβ(πβπ₯))(πβπ₯)))) = (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯))))) |
157 | 156 | mpoeq3dv 5941 |
. . . . . . . . . . . 12
β’ ((π = π β§ π = π
) β (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π β¦ ((πβπ₯)(Β·πβ(πβπ₯))(πβπ₯))))) = (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))) |
158 | 157 | opeq2d 3786 |
. . . . . . . . . . 11
β’ ((π = π β§ π = π
) β
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π β¦ ((πβπ₯)(Β·πβ(πβπ₯))(πβπ₯)))))β© =
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©) |
159 | 145, 152,
158 | tpeq123d 3685 |
. . . . . . . . . 10
β’ ((π = π β§ π = π
) β {β¨(Scalarβndx), π β©, β¨(
Β·π βndx), (π β (Baseβπ ), π β π£ β¦ (π₯ β dom π β¦ (π( Β·π
β(πβπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π β¦ ((πβπ₯)(Β·πβ(πβπ₯))(πβπ₯)))))β©} = {β¨(Scalarβndx), πβ©, β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©}) |
160 | 143, 159 | uneq12d 3291 |
. . . . . . . . 9
β’ ((π = π β§ π = π
) β ({β¨(Baseβndx), π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(+gβ(πβπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(.rβ(πβπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx),
π β©, β¨(
Β·π βndx), (π β (Baseβπ ), π β π£ β¦ (π₯ β dom π β¦ (π( Β·π
β(πβπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π β¦ ((πβπ₯)(Β·πβ(πβπ₯))(πβπ₯)))))β©}) = ({β¨(Baseβndx), π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx), πβ©, β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©})) |
161 | 124 | coeq2d 4790 |
. . . . . . . . . . . . 13
β’ ((π = π β§ π = π
) β (TopOpen β π) = (TopOpen β π
)) |
162 | 161 | fveq2d 5520 |
. . . . . . . . . . . 12
β’ ((π = π β§ π = π
) β (βtβ(TopOpen
β π)) =
(βtβ(TopOpen β π
))) |
163 | 162 | opeq2d 3786 |
. . . . . . . . . . 11
β’ ((π = π β§ π = π
) β β¨(TopSetβndx),
(βtβ(TopOpen β π))β© = β¨(TopSetβndx),
(βtβ(TopOpen β π
))β©) |
164 | 125 | fveq2d 5520 |
. . . . . . . . . . . . . . . 16
β’ ((π = π β§ π = π
) β (leβ(πβπ₯)) = (leβ(π
βπ₯))) |
165 | 164 | breqd 4015 |
. . . . . . . . . . . . . . 15
β’ ((π = π β§ π = π
) β ((πβπ₯)(leβ(πβπ₯))(πβπ₯) β (πβπ₯)(leβ(π
βπ₯))(πβπ₯))) |
166 | 122, 165 | raleqbidv 2685 |
. . . . . . . . . . . . . 14
β’ ((π = π β§ π = π
) β (βπ₯ β dom π(πβπ₯)(leβ(πβπ₯))(πβπ₯) β βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))) |
167 | 166 | anbi2d 464 |
. . . . . . . . . . . . 13
β’ ((π = π β§ π = π
) β (({π, π} β π£ β§ βπ₯ β dom π(πβπ₯)(leβ(πβπ₯))(πβπ₯)) β ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯)))) |
168 | 167 | opabbidv 4070 |
. . . . . . . . . . . 12
β’ ((π = π β§ π = π
) β {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π(πβπ₯)(leβ(πβπ₯))(πβπ₯))} = {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}) |
169 | 168 | opeq2d 3786 |
. . . . . . . . . . 11
β’ ((π = π β§ π = π
) β β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π(πβπ₯)(leβ(πβπ₯))(πβπ₯))}β© = β¨(leβndx),
{β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β©) |
170 | 125 | fveq2d 5520 |
. . . . . . . . . . . . . . . . . 18
β’ ((π = π β§ π = π
) β (distβ(πβπ₯)) = (distβ(π
βπ₯))) |
171 | 170 | oveqd 5892 |
. . . . . . . . . . . . . . . . 17
β’ ((π = π β§ π = π
) β ((πβπ₯)(distβ(πβπ₯))(πβπ₯)) = ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) |
172 | 122, 171 | mpteq12dv 4086 |
. . . . . . . . . . . . . . . 16
β’ ((π = π β§ π = π
) β (π₯ β dom π β¦ ((πβπ₯)(distβ(πβπ₯))(πβπ₯))) = (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯)))) |
173 | 172 | rneqd 4857 |
. . . . . . . . . . . . . . 15
β’ ((π = π β§ π = π
) β ran (π₯ β dom π β¦ ((πβπ₯)(distβ(πβπ₯))(πβπ₯))) = ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯)))) |
174 | 173 | uneq1d 3289 |
. . . . . . . . . . . . . 14
β’ ((π = π β§ π = π
) β (ran (π₯ β dom π β¦ ((πβπ₯)(distβ(πβπ₯))(πβπ₯))) βͺ {0}) = (ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0})) |
175 | 174 | supeq1d 6986 |
. . . . . . . . . . . . 13
β’ ((π = π β§ π = π
) β sup((ran (π₯ β dom π β¦ ((πβπ₯)(distβ(πβπ₯))(πβπ₯))) βͺ {0}), β*, < ) =
sup((ran (π₯ β dom
π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
)) |
176 | 175 | mpoeq3dv 5941 |
. . . . . . . . . . . 12
β’ ((π = π β§ π = π
) β (π β π£, π β π£ β¦ sup((ran (π₯ β dom π β¦ ((πβπ₯)(distβ(πβπ₯))(πβπ₯))) βͺ {0}), β*, < ))
= (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))) |
177 | 176 | opeq2d 3786 |
. . . . . . . . . . 11
β’ ((π = π β§ π = π
) β β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π β¦ ((πβπ₯)(distβ(πβπ₯))(πβπ₯))) βͺ {0}), β*, <
))β© = β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©) |
178 | 163, 169,
177 | tpeq123d 3685 |
. . . . . . . . . 10
β’ ((π = π β§ π = π
) β {β¨(TopSetβndx),
(βtβ(TopOpen β π))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π(πβπ₯)(leβ(πβπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π β¦ ((πβπ₯)(distβ(πβπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} = {β¨(TopSetβndx), (βtβ(TopOpen
β π
))β©,
β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©}) |
179 | 125 | fveq2d 5520 |
. . . . . . . . . . . . . . . . 17
β’ ((π = π β§ π = π
) β (compβ(πβπ₯)) = (compβ(π
βπ₯))) |
180 | 179 | oveqd 5892 |
. . . . . . . . . . . . . . . 16
β’ ((π = π β§ π = π
) β (β¨((1st
βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(πβπ₯))(πβπ₯)) = (β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))) |
181 | 180 | oveqd 5892 |
. . . . . . . . . . . . . . 15
β’ ((π = π β§ π = π
) β ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(πβπ₯))(πβπ₯))(πβπ₯)) = ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯))) |
182 | 122, 181 | mpteq12dv 4086 |
. . . . . . . . . . . . . 14
β’ ((π = π β§ π = π
) β (π₯ β dom π β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(πβπ₯))(πβπ₯))(πβπ₯))) = (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))) |
183 | 182 | mpoeq3dv 5941 |
. . . . . . . . . . . . 13
β’ ((π = π β§ π = π
) β (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(πβπ₯))(πβπ₯))(πβπ₯)))) = (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯))))) |
184 | 183 | mpoeq3dv 5941 |
. . . . . . . . . . . 12
β’ ((π = π β§ π = π
) β (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(πβπ₯))(πβπ₯))(πβπ₯))))) = (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))) |
185 | 184 | opeq2d 3786 |
. . . . . . . . . . 11
β’ ((π = π β§ π = π
) β β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(πβπ₯))(πβπ₯))(πβπ₯)))))β© = β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©) |
186 | 185 | preq2d 3677 |
. . . . . . . . . 10
β’ ((π = π β§ π = π
) β {β¨(Hom βndx), ββ©, β¨(compβndx),
(π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(πβπ₯))(πβπ₯))(πβπ₯)))))β©} = {β¨(Hom βndx), ββ©, β¨(compβndx),
(π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©}) |
187 | 178, 186 | uneq12d 3291 |
. . . . . . . . 9
β’ ((π = π β§ π = π
) β ({β¨(TopSetβndx),
(βtβ(TopOpen β π))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π(πβπ₯)(leβ(πβπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π β¦ ((πβπ₯)(distβ(πβπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(πβπ₯))(πβπ₯))(πβπ₯)))))β©}) = ({β¨(TopSetβndx),
(βtβ(TopOpen β π
))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©})) |
188 | 160, 187 | uneq12d 3291 |
. . . . . . . 8
β’ ((π = π β§ π = π
) β (({β¨(Baseβndx), π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(+gβ(πβπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(.rβ(πβπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx),
π β©, β¨(
Β·π βndx), (π β (Baseβπ ), π β π£ β¦ (π₯ β dom π β¦ (π( Β·π
β(πβπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π β¦ ((πβπ₯)(Β·πβ(πβπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(βtβ(TopOpen β π))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π(πβπ₯)(leβ(πβπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π β¦ ((πβπ₯)(distβ(πβπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(πβπ₯))(πβπ₯))(πβπ₯)))))β©})) = (({β¨(Baseβndx), π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx), πβ©, β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(βtβ(TopOpen β π
))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©}))) |
189 | 188 | csbeq2dv 3084 |
. . . . . . 7
β’ ((π = π β§ π = π
) β β¦(π β π£, π β π£ β¦ Xπ₯ β dom π
((πβπ₯)(Hom β(π
βπ₯))(πβπ₯))) / ββ¦(({β¨(Baseβndx),
π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(+gβ(πβπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(.rβ(πβπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx),
π β©, β¨(
Β·π βndx), (π β (Baseβπ ), π β π£ β¦ (π₯ β dom π β¦ (π( Β·π
β(πβπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π β¦ ((πβπ₯)(Β·πβ(πβπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(βtβ(TopOpen β π))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π(πβπ₯)(leβ(πβπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π β¦ ((πβπ₯)(distβ(πβπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(πβπ₯))(πβπ₯))(πβπ₯)))))β©})) = β¦(π β π£, π β π£ β¦ Xπ₯ β dom π
((πβπ₯)(Hom β(π
βπ₯))(πβπ₯))) / ββ¦(({β¨(Baseβndx), π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx), πβ©, β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(βtβ(TopOpen β π
))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©}))) |
190 | 131, 189 | eqtrd 2210 |
. . . . . 6
β’ ((π = π β§ π = π
) β β¦(π β π£, π β π£ β¦ Xπ₯ β dom π((πβπ₯)(Hom β(πβπ₯))(πβπ₯))) / ββ¦(({β¨(Baseβndx),
π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(+gβ(πβπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(.rβ(πβπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx),
π β©, β¨(
Β·π βndx), (π β (Baseβπ ), π β π£ β¦ (π₯ β dom π β¦ (π( Β·π
β(πβπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π β¦ ((πβπ₯)(Β·πβ(πβπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(βtβ(TopOpen β π))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π(πβπ₯)(leβ(πβπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π β¦ ((πβπ₯)(distβ(πβπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(πβπ₯))(πβπ₯))(πβπ₯)))))β©})) = β¦(π β π£, π β π£ β¦ Xπ₯ β dom π
((πβπ₯)(Hom β(π
βπ₯))(πβπ₯))) / ββ¦(({β¨(Baseβndx), π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx), πβ©, β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(βtβ(TopOpen β π
))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©}))) |
191 | 190 | csbeq2dv 3084 |
. . . . 5
β’ ((π = π β§ π = π
) β β¦Xπ₯ β
dom π
(Baseβ(π
βπ₯)) / π£β¦β¦(π β π£, π β π£ β¦ Xπ₯ β dom π((πβπ₯)(Hom β(πβπ₯))(πβπ₯))) / ββ¦(({β¨(Baseβndx),
π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(+gβ(πβπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(.rβ(πβπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx),
π β©, β¨(
Β·π βndx), (π β (Baseβπ ), π β π£ β¦ (π₯ β dom π β¦ (π( Β·π
β(πβπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π β¦ ((πβπ₯)(Β·πβ(πβπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(βtβ(TopOpen β π))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π(πβπ₯)(leβ(πβπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π β¦ ((πβπ₯)(distβ(πβπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(πβπ₯))(πβπ₯))(πβπ₯)))))β©})) = β¦Xπ₯ β dom
π
(Baseβ(π
βπ₯)) / π£β¦β¦(π β π£, π β π£ β¦ Xπ₯ β dom π
((πβπ₯)(Hom β(π
βπ₯))(πβπ₯))) / ββ¦(({β¨(Baseβndx), π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx), πβ©, β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(βtβ(TopOpen β π
))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©}))) |
192 | 121, 191 | eqtrd 2210 |
. . . 4
β’ ((π = π β§ π = π
) β β¦Xπ₯ β
dom π(Baseβ(πβπ₯)) / π£β¦β¦(π β π£, π β π£ β¦ Xπ₯ β dom π((πβπ₯)(Hom β(πβπ₯))(πβπ₯))) / ββ¦(({β¨(Baseβndx),
π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(+gβ(πβπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(.rβ(πβπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx),
π β©, β¨(
Β·π βndx), (π β (Baseβπ ), π β π£ β¦ (π₯ β dom π β¦ (π( Β·π
β(πβπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π β¦ ((πβπ₯)(Β·πβ(πβπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(βtβ(TopOpen β π))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π(πβπ₯)(leβ(πβπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π β¦ ((πβπ₯)(distβ(πβπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(πβπ₯))(πβπ₯))(πβπ₯)))))β©})) = β¦Xπ₯ β dom
π
(Baseβ(π
βπ₯)) / π£β¦β¦(π β π£, π β π£ β¦ Xπ₯ β dom π
((πβπ₯)(Hom β(π
βπ₯))(πβπ₯))) / ββ¦(({β¨(Baseβndx), π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx), πβ©, β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(βtβ(TopOpen β π
))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©}))) |
193 | | df-prds 12716 |
. . . 4
β’ Xs = (π β V, π β V β¦ β¦Xπ₯ β
dom π(Baseβ(πβπ₯)) / π£β¦β¦(π β π£, π β π£ β¦ Xπ₯ β dom π((πβπ₯)(Hom β(πβπ₯))(πβπ₯))) / ββ¦(({β¨(Baseβndx),
π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(+gβ(πβπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π β¦ ((πβπ₯)(.rβ(πβπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx),
π β©, β¨(
Β·π βndx), (π β (Baseβπ ), π β π£ β¦ (π₯ β dom π β¦ (π( Β·π
β(πβπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π β¦ ((πβπ₯)(Β·πβ(πβπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(βtβ(TopOpen β π))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π(πβπ₯)(leβ(πβπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π β¦ ((πβπ₯)(distβ(πβπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(πβπ₯))(πβπ₯))(πβπ₯)))))β©}))) |
194 | 192, 193 | ovmpoga 6004 |
. . 3
β’ ((π β V β§ π
β V β§
β¦Xπ₯ β dom π
(Baseβ(π
βπ₯)) / π£β¦β¦(π β π£, π β π£ β¦ Xπ₯ β dom π
((πβπ₯)(Hom β(π
βπ₯))(πβπ₯))) / ββ¦(({β¨(Baseβndx),
π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx),
πβ©, β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(βtβ(TopOpen β π
))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©})) β V) β (πXsπ
) = β¦Xπ₯ β dom π
(Baseβ(π
βπ₯)) / π£β¦β¦(π β π£, π β π£ β¦ Xπ₯ β dom π
((πβπ₯)(Hom β(π
βπ₯))(πβπ₯))) / ββ¦(({β¨(Baseβndx), π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx), πβ©, β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(βtβ(TopOpen β π
))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©}))) |
195 | 2, 4, 113, 194 | syl3anc 1238 |
. 2
β’ ((π β π β§ π
β π) β (πXsπ
) = β¦Xπ₯ β
dom π
(Baseβ(π
βπ₯)) / π£β¦β¦(π β π£, π β π£ β¦ Xπ₯ β dom π
((πβπ₯)(Hom β(π
βπ₯))(πβπ₯))) / ββ¦(({β¨(Baseβndx),
π£β©,
β¨(+gβndx), (π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))β©, β¨(.rβndx),
(π β π£, π β π£ β¦ (π₯ β dom π
β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))β©} βͺ {β¨(Scalarβndx),
πβ©, β¨(
Β·π βndx), (π β (Baseβπ), π β π£ β¦ (π₯ β dom π
β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))β©,
β¨(Β·πβndx), (π β π£, π β π£ β¦ (π Ξ£g (π₯ β dom π
β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(βtβ(TopOpen β π
))β©, β¨(leβndx), {β¨π, πβ© β£ ({π, π} β π£ β§ βπ₯ β dom π
(πβπ₯)(leβ(π
βπ₯))(πβπ₯))}β©, β¨(distβndx), (π β π£, π β π£ β¦ sup((ran (π₯ β dom π
β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))β©} βͺ {β¨(Hom βndx), ββ©, β¨(compβndx), (π β (π£ Γ π£), π β π£ β¦ (π β (πβ(2nd βπ)), π β (ββπ) β¦ (π₯ β dom π
β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©}))) |
196 | 195, 113 | eqeltrd 2254 |
1
β’ ((π β π β§ π
β π) β (πXsπ
) β V) |