ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmprds GIF version

Theorem reldmprds 12722
Description: The structure product is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.)
Assertion
Ref Expression
reldmprds Rel dom Xs

Proof of Theorem reldmprds
Dummy variables π‘Ž 𝑐 𝑑 𝑒 𝑓 𝑔 β„Ž 𝑠 π‘Ÿ π‘₯ 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-prds 12721 . 2 Xs = (𝑠 ∈ V, π‘Ÿ ∈ V ↦ ⦋Xπ‘₯ ∈ dom π‘Ÿ(Baseβ€˜(π‘Ÿβ€˜π‘₯)) / π‘£β¦Œβ¦‹(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ Xπ‘₯ ∈ dom π‘Ÿ((π‘“β€˜π‘₯)(Hom β€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯))) / β„Žβ¦Œ(({⟨(Baseβ€˜ndx), π‘£βŸ©, ⟨(+gβ€˜ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (π‘₯ ∈ dom π‘Ÿ ↦ ((π‘“β€˜π‘₯)(+gβ€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯))))⟩, ⟨(.rβ€˜ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (π‘₯ ∈ dom π‘Ÿ ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯))))⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘ βŸ©, ⟨( ·𝑠 β€˜ndx), (𝑓 ∈ (Baseβ€˜π‘ ), 𝑔 ∈ 𝑣 ↦ (π‘₯ ∈ dom π‘Ÿ ↦ (𝑓( ·𝑠 β€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯))))⟩, ⟨(Β·π‘–β€˜ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Ξ£g (π‘₯ ∈ dom π‘Ÿ ↦ ((π‘“β€˜π‘₯)(Β·π‘–β€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯)))))⟩}) βˆͺ ({⟨(TopSetβ€˜ndx), (∏tβ€˜(TopOpen ∘ π‘Ÿ))⟩, ⟨(leβ€˜ndx), {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝑣 ∧ βˆ€π‘₯ ∈ dom π‘Ÿ(π‘“β€˜π‘₯)(leβ€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯))}⟩, ⟨(distβ€˜ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (π‘₯ ∈ dom π‘Ÿ ↦ ((π‘“β€˜π‘₯)(distβ€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯))) βˆͺ {0}), ℝ*, < ))⟩} βˆͺ {⟨(Hom β€˜ndx), β„ŽβŸ©, ⟨(compβ€˜ndx), (π‘Ž ∈ (𝑣 Γ— 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ (π‘β„Ž(2nd β€˜π‘Ž)), 𝑒 ∈ (β„Žβ€˜π‘Ž) ↦ (π‘₯ ∈ dom π‘Ÿ ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘Ÿβ€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯)))))⟩})))
21reldmmpo 5988 1 Rel dom Xs
Colors of variables: wff set class
Syntax hints:   ∧ wa 104  βˆ€wral 2455  Vcvv 2739  β¦‹csb 3059   βˆͺ cun 3129   βŠ† wss 3131  {csn 3594  {cpr 3595  {ctp 3596  βŸ¨cop 3597   class class class wbr 4005  {copab 4065   ↦ cmpt 4066   Γ— cxp 4626  dom cdm 4628  ran crn 4629   ∘ ccom 4632  Rel wrel 4633  β€˜cfv 5218  (class class class)co 5877   ∈ cmpo 5879  1st c1st 6141  2nd c2nd 6142  Xcixp 6700  supcsup 6983  0cc0 7813  β„*cxr 7993   < clt 7994  ndxcnx 12461  Basecbs 12464  +gcplusg 12538  .rcmulr 12539  Scalarcsca 12541   ·𝑠 cvsca 12542  Β·π‘–cip 12543  TopSetcts 12544  lecple 12545  distcds 12547  Hom chom 12549  compcco 12550  TopOpenctopn 12694  βˆtcpt 12709   Ξ£g cgsu 12711  Xscprds 12719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-dm 4638  df-oprab 5881  df-mpo 5882  df-prds 12721
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator