| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-rest | GIF version | ||
| Description: Function returning the subspace topology induced by the topology 𝑦 and the set 𝑥. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.) | 
| Ref | Expression | 
|---|---|
| df-rest | ⊢ ↾t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | crest 12910 | . 2 class ↾t | |
| 2 | vj | . . 3 setvar 𝑗 | |
| 3 | vx | . . 3 setvar 𝑥 | |
| 4 | cvv 2763 | . . 3 class V | |
| 5 | vy | . . . . 5 setvar 𝑦 | |
| 6 | 2 | cv 1363 | . . . . 5 class 𝑗 | 
| 7 | 5 | cv 1363 | . . . . . 6 class 𝑦 | 
| 8 | 3 | cv 1363 | . . . . . 6 class 𝑥 | 
| 9 | 7, 8 | cin 3156 | . . . . 5 class (𝑦 ∩ 𝑥) | 
| 10 | 5, 6, 9 | cmpt 4094 | . . . 4 class (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥)) | 
| 11 | 10 | crn 4664 | . . 3 class ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥)) | 
| 12 | 2, 3, 4, 4, 11 | cmpo 5924 | . 2 class (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥))) | 
| 13 | 1, 12 | wceq 1364 | 1 wff ↾t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥))) | 
| Colors of variables: wff set class | 
| This definition is referenced by: restfn 12914 restval 12916 restsspw 12920 restrcl 14403 ssrest 14418 | 
| Copyright terms: Public domain | W3C validator |