| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > restfn | GIF version | ||
| Description: The subspace topology operator is a function on pairs. (Contributed by Mario Carneiro, 1-May-2015.) |
| Ref | Expression |
|---|---|
| restfn | ⊢ ↾t Fn (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rest 13260 | . 2 ⊢ ↾t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥))) | |
| 2 | vex 2802 | . . . 4 ⊢ 𝑗 ∈ V | |
| 3 | 2 | mptex 5858 | . . 3 ⊢ (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥)) ∈ V |
| 4 | 3 | rnex 4988 | . 2 ⊢ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥)) ∈ V |
| 5 | 1, 4 | fnmpoi 6339 | 1 ⊢ ↾t Fn (V × V) |
| Colors of variables: wff set class |
| Syntax hints: Vcvv 2799 ∩ cin 3196 ↦ cmpt 4144 × cxp 4714 ran crn 4717 Fn wfn 5309 ↾t crest 13258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-rest 13260 |
| This theorem is referenced by: topnfn 13263 topnvalg 13270 restbasg 14827 tgrest 14828 restco 14833 txrest 14935 |
| Copyright terms: Public domain | W3C validator |