ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restfn GIF version

Theorem restfn 11906
Description: The subspace topology operator is a function on pairs. (Contributed by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
restfn t Fn (V × V)

Proof of Theorem restfn
Dummy variables 𝑥 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rest 11904 . 2 t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦𝑗 ↦ (𝑦𝑥)))
2 vex 2644 . . . 4 𝑗 ∈ V
32mptex 5578 . . 3 (𝑦𝑗 ↦ (𝑦𝑥)) ∈ V
43rnex 4742 . 2 ran (𝑦𝑗 ↦ (𝑦𝑥)) ∈ V
51, 4fnmpoi 6032 1 t Fn (V × V)
Colors of variables: wff set class
Syntax hints:  Vcvv 2641  cin 3020  cmpt 3929   × cxp 4475  ran crn 4478   Fn wfn 5054  t crest 11902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-rest 11904
This theorem is referenced by:  topnfn  11907  topnvalg  11914  restbasg  12119  tgrest  12120  restco  12125  txrest  12226
  Copyright terms: Public domain W3C validator