ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restsspw GIF version

Theorem restsspw 12321
Description: The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
restsspw (𝐽t 𝐴) ⊆ 𝒫 𝐴

Proof of Theorem restsspw
Dummy variables 𝑥 𝑦 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rest 12313 . . . . . . 7 t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦𝑗 ↦ (𝑦𝑥)))
21elmpocl 6012 . . . . . 6 (𝑥 ∈ (𝐽t 𝐴) → (𝐽 ∈ V ∧ 𝐴 ∈ V))
3 elrest 12318 . . . . . 6 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑥 = (𝑦𝐴)))
42, 3syl 14 . . . . 5 (𝑥 ∈ (𝐽t 𝐴) → (𝑥 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑥 = (𝑦𝐴)))
54ibi 175 . . . 4 (𝑥 ∈ (𝐽t 𝐴) → ∃𝑦𝐽 𝑥 = (𝑦𝐴))
6 inss2 3328 . . . . . 6 (𝑦𝐴) ⊆ 𝐴
7 sseq1 3151 . . . . . 6 (𝑥 = (𝑦𝐴) → (𝑥𝐴 ↔ (𝑦𝐴) ⊆ 𝐴))
86, 7mpbiri 167 . . . . 5 (𝑥 = (𝑦𝐴) → 𝑥𝐴)
98rexlimivw 2570 . . . 4 (∃𝑦𝐽 𝑥 = (𝑦𝐴) → 𝑥𝐴)
105, 9syl 14 . . 3 (𝑥 ∈ (𝐽t 𝐴) → 𝑥𝐴)
11 velpw 3550 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
1210, 11sylibr 133 . 2 (𝑥 ∈ (𝐽t 𝐴) → 𝑥 ∈ 𝒫 𝐴)
1312ssriv 3132 1 (𝐽t 𝐴) ⊆ 𝒫 𝐴
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1335  wcel 2128  wrex 2436  Vcvv 2712  cin 3101  wss 3102  𝒫 cpw 3543  cmpt 4025  ran crn 4584  (class class class)co 5818  t crest 12311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-ov 5821  df-oprab 5822  df-mpo 5823  df-rest 12313
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator