ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restrcl GIF version

Theorem restrcl 14557
Description: Reverse closure for the subspace topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Proof shortened by Jim Kingdon, 23-Mar-2023.)
Assertion
Ref Expression
restrcl ((𝐽t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V))

Proof of Theorem restrcl
Dummy variables 𝑥 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0opn 14396 . 2 ((𝐽t 𝐴) ∈ Top → ∅ ∈ (𝐽t 𝐴))
2 df-rest 12991 . . 3 t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦𝑗 ↦ (𝑦𝑥)))
32elmpocl 6131 . 2 (∅ ∈ (𝐽t 𝐴) → (𝐽 ∈ V ∧ 𝐴 ∈ V))
41, 3syl 14 1 ((𝐽t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2175  Vcvv 2771  cin 3164  c0 3459  cmpt 4104  ran crn 4674  (class class class)co 5934  t crest 12989  Topctop 14387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-iota 5229  df-fun 5270  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-rest 12991  df-top 14388
This theorem is referenced by:  cnrest2r  14627
  Copyright terms: Public domain W3C validator