![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssrest | GIF version |
Description: If 𝐾 is a finer topology than 𝐽, then the subspace topologies induced by 𝐴 maintain this relationship. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.) |
Ref | Expression |
---|---|
ssrest | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) → (𝐽 ↾t 𝐴) ⊆ (𝐾 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → 𝑥 ∈ (𝐽 ↾t 𝐴)) | |
2 | ssrexv 3245 | . . . . . 6 ⊢ (𝐽 ⊆ 𝐾 → (∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴) → ∃𝑦 ∈ 𝐾 𝑥 = (𝑦 ∩ 𝐴))) | |
3 | 2 | ad2antlr 489 | . . . . 5 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → (∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴) → ∃𝑦 ∈ 𝐾 𝑥 = (𝑦 ∩ 𝐴))) |
4 | df-rest 12855 | . . . . . . . 8 ⊢ ↾t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥))) | |
5 | 4 | elmpocl 6115 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → (𝐽 ∈ V ∧ 𝐴 ∈ V)) |
6 | 5 | adantl 277 | . . . . . 6 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → (𝐽 ∈ V ∧ 𝐴 ∈ V)) |
7 | elrest 12860 | . . . . . 6 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴))) | |
8 | 6, 7 | syl 14 | . . . . 5 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → (𝑥 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴))) |
9 | simpll 527 | . . . . . 6 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → 𝐾 ∈ 𝑉) | |
10 | 6 | simprd 114 | . . . . . 6 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → 𝐴 ∈ V) |
11 | elrest 12860 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐾 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐾 𝑥 = (𝑦 ∩ 𝐴))) | |
12 | 9, 10, 11 | syl2anc 411 | . . . . 5 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → (𝑥 ∈ (𝐾 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐾 𝑥 = (𝑦 ∩ 𝐴))) |
13 | 3, 8, 12 | 3imtr4d 203 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → (𝑥 ∈ (𝐽 ↾t 𝐴) → 𝑥 ∈ (𝐾 ↾t 𝐴))) |
14 | 1, 13 | mpd 13 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → 𝑥 ∈ (𝐾 ↾t 𝐴)) |
15 | 14 | ex 115 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) → (𝑥 ∈ (𝐽 ↾t 𝐴) → 𝑥 ∈ (𝐾 ↾t 𝐴))) |
16 | 15 | ssrdv 3186 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) → (𝐽 ↾t 𝐴) ⊆ (𝐾 ↾t 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 Vcvv 2760 ∩ cin 3153 ⊆ wss 3154 ↦ cmpt 4091 ran crn 4661 (class class class)co 5919 ↾t crest 12853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-rest 12855 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |