Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssrest | GIF version |
Description: If 𝐾 is a finer topology than 𝐽, then the subspace topologies induced by 𝐴 maintain this relationship. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.) |
Ref | Expression |
---|---|
ssrest | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) → (𝐽 ↾t 𝐴) ⊆ (𝐾 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → 𝑥 ∈ (𝐽 ↾t 𝐴)) | |
2 | ssrexv 3193 | . . . . . 6 ⊢ (𝐽 ⊆ 𝐾 → (∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴) → ∃𝑦 ∈ 𝐾 𝑥 = (𝑦 ∩ 𝐴))) | |
3 | 2 | ad2antlr 481 | . . . . 5 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → (∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴) → ∃𝑦 ∈ 𝐾 𝑥 = (𝑦 ∩ 𝐴))) |
4 | df-rest 12324 | . . . . . . . 8 ⊢ ↾t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥))) | |
5 | 4 | elmpocl 6015 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → (𝐽 ∈ V ∧ 𝐴 ∈ V)) |
6 | 5 | adantl 275 | . . . . . 6 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → (𝐽 ∈ V ∧ 𝐴 ∈ V)) |
7 | elrest 12329 | . . . . . 6 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴))) | |
8 | 6, 7 | syl 14 | . . . . 5 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → (𝑥 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴))) |
9 | simpll 519 | . . . . . 6 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → 𝐾 ∈ 𝑉) | |
10 | 6 | simprd 113 | . . . . . 6 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → 𝐴 ∈ V) |
11 | elrest 12329 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐾 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐾 𝑥 = (𝑦 ∩ 𝐴))) | |
12 | 9, 10, 11 | syl2anc 409 | . . . . 5 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → (𝑥 ∈ (𝐾 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐾 𝑥 = (𝑦 ∩ 𝐴))) |
13 | 3, 8, 12 | 3imtr4d 202 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → (𝑥 ∈ (𝐽 ↾t 𝐴) → 𝑥 ∈ (𝐾 ↾t 𝐴))) |
14 | 1, 13 | mpd 13 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → 𝑥 ∈ (𝐾 ↾t 𝐴)) |
15 | 14 | ex 114 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) → (𝑥 ∈ (𝐽 ↾t 𝐴) → 𝑥 ∈ (𝐾 ↾t 𝐴))) |
16 | 15 | ssrdv 3134 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) → (𝐽 ↾t 𝐴) ⊆ (𝐾 ↾t 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1335 ∈ wcel 2128 ∃wrex 2436 Vcvv 2712 ∩ cin 3101 ⊆ wss 3102 ↦ cmpt 4025 ran crn 4586 (class class class)co 5821 ↾t crest 12322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-ov 5824 df-oprab 5825 df-mpo 5826 df-rest 12324 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |