![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > restval | GIF version |
Description: The subspace topology induced by the topology 𝐽 on the set 𝐴. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.) |
Ref | Expression |
---|---|
restval | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2644 | . 2 ⊢ (𝐽 ∈ 𝑉 → 𝐽 ∈ V) | |
2 | elex 2644 | . 2 ⊢ (𝐴 ∈ 𝑊 → 𝐴 ∈ V) | |
3 | mptexg 5561 | . . . . 5 ⊢ (𝐽 ∈ V → (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) ∈ V) | |
4 | rnexg 4730 | . . . . 5 ⊢ ((𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) ∈ V → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) ∈ V) | |
5 | 3, 4 | syl 14 | . . . 4 ⊢ (𝐽 ∈ V → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) ∈ V) |
6 | 5 | adantr 271 | . . 3 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V) → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) ∈ V) |
7 | simpl 108 | . . . . . 6 ⊢ ((𝑗 = 𝐽 ∧ 𝑦 = 𝐴) → 𝑗 = 𝐽) | |
8 | simpr 109 | . . . . . . 7 ⊢ ((𝑗 = 𝐽 ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴) | |
9 | 8 | ineq2d 3216 | . . . . . 6 ⊢ ((𝑗 = 𝐽 ∧ 𝑦 = 𝐴) → (𝑥 ∩ 𝑦) = (𝑥 ∩ 𝐴)) |
10 | 7, 9 | mpteq12dv 3942 | . . . . 5 ⊢ ((𝑗 = 𝐽 ∧ 𝑦 = 𝐴) → (𝑥 ∈ 𝑗 ↦ (𝑥 ∩ 𝑦)) = (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
11 | 10 | rneqd 4696 | . . . 4 ⊢ ((𝑗 = 𝐽 ∧ 𝑦 = 𝐴) → ran (𝑥 ∈ 𝑗 ↦ (𝑥 ∩ 𝑦)) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
12 | df-rest 11822 | . . . 4 ⊢ ↾t = (𝑗 ∈ V, 𝑦 ∈ V ↦ ran (𝑥 ∈ 𝑗 ↦ (𝑥 ∩ 𝑦))) | |
13 | 11, 12 | ovmpt2ga 5812 | . . 3 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V ∧ ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) ∈ V) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
14 | 6, 13 | mpd3an3 1281 | . 2 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
15 | 1, 2, 14 | syl2an 284 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1296 ∈ wcel 1445 Vcvv 2633 ∩ cin 3012 ↦ cmpt 3921 ran crn 4468 (class class class)co 5690 ↾t crest 11820 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-coll 3975 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-ral 2375 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-csb 2948 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-iun 3754 df-br 3868 df-opab 3922 df-mpt 3923 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-f1 5054 df-fo 5055 df-f1o 5056 df-fv 5057 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-rest 11822 |
This theorem is referenced by: elrest 11827 restid2 11829 tgrest 12037 resttopon 12039 restco 12042 rest0 12047 |
Copyright terms: Public domain | W3C validator |