| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-v | GIF version | ||
| Description: Define the universal class. Definition 5.20 of [TakeutiZaring] p. 21. Also Definition 2.9 of [Quine] p. 19. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| df-v | ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvv 2763 | . 2 class V | |
| 2 | vx | . . . 4 setvar 𝑥 | |
| 3 | 2, 2 | weq 1517 | . . 3 wff 𝑥 = 𝑥 |
| 4 | 3, 2 | cab 2182 | . 2 class {𝑥 ∣ 𝑥 = 𝑥} |
| 5 | 1, 4 | wceq 1364 | 1 wff V = {𝑥 ∣ 𝑥 = 𝑥} |
| Colors of variables: wff set class |
| This definition is referenced by: vex 2766 int0 3888 ruv 4586 dcextest 4617 snexxph 7016 |
| Copyright terms: Public domain | W3C validator |