ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vjust GIF version

Theorem vjust 2772
Description: Soundness justification theorem for df-v 2773. (Contributed by Rodolfo Medina, 27-Apr-2010.)
Assertion
Ref Expression
vjust {𝑥𝑥 = 𝑥} = {𝑦𝑦 = 𝑦}

Proof of Theorem vjust
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 equid 1723 . . . . 5 𝑥 = 𝑥
21sbt 1806 . . . 4 [𝑧 / 𝑥]𝑥 = 𝑥
3 equid 1723 . . . . 5 𝑦 = 𝑦
43sbt 1806 . . . 4 [𝑧 / 𝑦]𝑦 = 𝑦
52, 42th 174 . . 3 ([𝑧 / 𝑥]𝑥 = 𝑥 ↔ [𝑧 / 𝑦]𝑦 = 𝑦)
6 df-clab 2191 . . 3 (𝑧 ∈ {𝑥𝑥 = 𝑥} ↔ [𝑧 / 𝑥]𝑥 = 𝑥)
7 df-clab 2191 . . 3 (𝑧 ∈ {𝑦𝑦 = 𝑦} ↔ [𝑧 / 𝑦]𝑦 = 𝑦)
85, 6, 73bitr4i 212 . 2 (𝑧 ∈ {𝑥𝑥 = 𝑥} ↔ 𝑧 ∈ {𝑦𝑦 = 𝑦})
98eqriv 2201 1 {𝑥𝑥 = 𝑥} = {𝑦𝑦 = 𝑦}
Colors of variables: wff set class
Syntax hints:   = wceq 1372  [wsb 1784  wcel 2175  {cab 2190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator