Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vjust | GIF version |
Description: Soundness justification theorem for df-v 2728. (Contributed by Rodolfo Medina, 27-Apr-2010.) |
Ref | Expression |
---|---|
vjust | ⊢ {𝑥 ∣ 𝑥 = 𝑥} = {𝑦 ∣ 𝑦 = 𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equid 1689 | . . . . 5 ⊢ 𝑥 = 𝑥 | |
2 | 1 | sbt 1772 | . . . 4 ⊢ [𝑧 / 𝑥]𝑥 = 𝑥 |
3 | equid 1689 | . . . . 5 ⊢ 𝑦 = 𝑦 | |
4 | 3 | sbt 1772 | . . . 4 ⊢ [𝑧 / 𝑦]𝑦 = 𝑦 |
5 | 2, 4 | 2th 173 | . . 3 ⊢ ([𝑧 / 𝑥]𝑥 = 𝑥 ↔ [𝑧 / 𝑦]𝑦 = 𝑦) |
6 | df-clab 2152 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ 𝑥 = 𝑥} ↔ [𝑧 / 𝑥]𝑥 = 𝑥) | |
7 | df-clab 2152 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝑦 = 𝑦} ↔ [𝑧 / 𝑦]𝑦 = 𝑦) | |
8 | 5, 6, 7 | 3bitr4i 211 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ 𝑥 = 𝑥} ↔ 𝑧 ∈ {𝑦 ∣ 𝑦 = 𝑦}) |
9 | 8 | eqriv 2162 | 1 ⊢ {𝑥 ∣ 𝑥 = 𝑥} = {𝑦 ∣ 𝑦 = 𝑦} |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 [wsb 1750 ∈ wcel 2136 {cab 2151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |