ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vjust GIF version

Theorem vjust 2764
Description: Soundness justification theorem for df-v 2765. (Contributed by Rodolfo Medina, 27-Apr-2010.)
Assertion
Ref Expression
vjust {𝑥𝑥 = 𝑥} = {𝑦𝑦 = 𝑦}

Proof of Theorem vjust
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 equid 1715 . . . . 5 𝑥 = 𝑥
21sbt 1798 . . . 4 [𝑧 / 𝑥]𝑥 = 𝑥
3 equid 1715 . . . . 5 𝑦 = 𝑦
43sbt 1798 . . . 4 [𝑧 / 𝑦]𝑦 = 𝑦
52, 42th 174 . . 3 ([𝑧 / 𝑥]𝑥 = 𝑥 ↔ [𝑧 / 𝑦]𝑦 = 𝑦)
6 df-clab 2183 . . 3 (𝑧 ∈ {𝑥𝑥 = 𝑥} ↔ [𝑧 / 𝑥]𝑥 = 𝑥)
7 df-clab 2183 . . 3 (𝑧 ∈ {𝑦𝑦 = 𝑦} ↔ [𝑧 / 𝑦]𝑦 = 𝑦)
85, 6, 73bitr4i 212 . 2 (𝑧 ∈ {𝑥𝑥 = 𝑥} ↔ 𝑧 ∈ {𝑦𝑦 = 𝑦})
98eqriv 2193 1 {𝑥𝑥 = 𝑥} = {𝑦𝑦 = 𝑦}
Colors of variables: wff set class
Syntax hints:   = wceq 1364  [wsb 1776  wcel 2167  {cab 2182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator