| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vjust | GIF version | ||
| Description: Soundness justification theorem for df-v 2765. (Contributed by Rodolfo Medina, 27-Apr-2010.) |
| Ref | Expression |
|---|---|
| vjust | ⊢ {𝑥 ∣ 𝑥 = 𝑥} = {𝑦 ∣ 𝑦 = 𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equid 1715 | . . . . 5 ⊢ 𝑥 = 𝑥 | |
| 2 | 1 | sbt 1798 | . . . 4 ⊢ [𝑧 / 𝑥]𝑥 = 𝑥 |
| 3 | equid 1715 | . . . . 5 ⊢ 𝑦 = 𝑦 | |
| 4 | 3 | sbt 1798 | . . . 4 ⊢ [𝑧 / 𝑦]𝑦 = 𝑦 |
| 5 | 2, 4 | 2th 174 | . . 3 ⊢ ([𝑧 / 𝑥]𝑥 = 𝑥 ↔ [𝑧 / 𝑦]𝑦 = 𝑦) |
| 6 | df-clab 2183 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ 𝑥 = 𝑥} ↔ [𝑧 / 𝑥]𝑥 = 𝑥) | |
| 7 | df-clab 2183 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝑦 = 𝑦} ↔ [𝑧 / 𝑦]𝑦 = 𝑦) | |
| 8 | 5, 6, 7 | 3bitr4i 212 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ 𝑥 = 𝑥} ↔ 𝑧 ∈ {𝑦 ∣ 𝑦 = 𝑦}) |
| 9 | 8 | eqriv 2193 | 1 ⊢ {𝑥 ∣ 𝑥 = 𝑥} = {𝑦 ∣ 𝑦 = 𝑦} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 [wsb 1776 ∈ wcel 2167 {cab 2182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |