| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ruv | GIF version | ||
| Description: The Russell class is equal to the universe V. Exercise 5 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 4-Oct-2008.) |
| Ref | Expression |
|---|---|
| ruv | ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-v 2773 | . 2 ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | |
| 2 | equid 1723 | . . . 4 ⊢ 𝑥 = 𝑥 | |
| 3 | elirrv 4594 | . . . . 5 ⊢ ¬ 𝑥 ∈ 𝑥 | |
| 4 | 3 | nelir 2473 | . . . 4 ⊢ 𝑥 ∉ 𝑥 |
| 5 | 2, 4 | 2th 174 | . . 3 ⊢ (𝑥 = 𝑥 ↔ 𝑥 ∉ 𝑥) |
| 6 | 5 | abbii 2320 | . 2 ⊢ {𝑥 ∣ 𝑥 = 𝑥} = {𝑥 ∣ 𝑥 ∉ 𝑥} |
| 7 | 1, 6 | eqtr2i 2226 | 1 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 {cab 2190 ∉ wnel 2470 Vcvv 2771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-setind 4583 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-v 2773 df-dif 3167 df-sn 3638 |
| This theorem is referenced by: ruALT 4597 |
| Copyright terms: Public domain | W3C validator |