| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ruv | GIF version | ||
| Description: The Russell class is equal to the universe V. Exercise 5 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 4-Oct-2008.) |
| Ref | Expression |
|---|---|
| ruv | ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-v 2801 | . 2 ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | |
| 2 | equid 1747 | . . . 4 ⊢ 𝑥 = 𝑥 | |
| 3 | elirrv 4639 | . . . . 5 ⊢ ¬ 𝑥 ∈ 𝑥 | |
| 4 | 3 | nelir 2498 | . . . 4 ⊢ 𝑥 ∉ 𝑥 |
| 5 | 2, 4 | 2th 174 | . . 3 ⊢ (𝑥 = 𝑥 ↔ 𝑥 ∉ 𝑥) |
| 6 | 5 | abbii 2345 | . 2 ⊢ {𝑥 ∣ 𝑥 = 𝑥} = {𝑥 ∣ 𝑥 ∉ 𝑥} |
| 7 | 1, 6 | eqtr2i 2251 | 1 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 {cab 2215 ∉ wnel 2495 Vcvv 2799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-v 2801 df-dif 3199 df-sn 3672 |
| This theorem is referenced by: ruALT 4642 |
| Copyright terms: Public domain | W3C validator |