ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ruv GIF version

Theorem ruv 4641
Description: The Russell class is equal to the universe V. Exercise 5 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 4-Oct-2008.)
Assertion
Ref Expression
ruv {𝑥𝑥𝑥} = V

Proof of Theorem ruv
StepHypRef Expression
1 df-v 2801 . 2 V = {𝑥𝑥 = 𝑥}
2 equid 1747 . . . 4 𝑥 = 𝑥
3 elirrv 4639 . . . . 5 ¬ 𝑥𝑥
43nelir 2498 . . . 4 𝑥𝑥
52, 42th 174 . . 3 (𝑥 = 𝑥𝑥𝑥)
65abbii 2345 . 2 {𝑥𝑥 = 𝑥} = {𝑥𝑥𝑥}
71, 6eqtr2i 2251 1 {𝑥𝑥𝑥} = V
Colors of variables: wff set class
Syntax hints:   = wceq 1395  {cab 2215  wnel 2495  Vcvv 2799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-v 2801  df-dif 3199  df-sn 3672
This theorem is referenced by:  ruALT  4642
  Copyright terms: Public domain W3C validator