| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ruv | GIF version | ||
| Description: The Russell class is equal to the universe V. Exercise 5 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 4-Oct-2008.) |
| Ref | Expression |
|---|---|
| ruv | ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-v 2775 | . 2 ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | |
| 2 | equid 1725 | . . . 4 ⊢ 𝑥 = 𝑥 | |
| 3 | elirrv 4604 | . . . . 5 ⊢ ¬ 𝑥 ∈ 𝑥 | |
| 4 | 3 | nelir 2475 | . . . 4 ⊢ 𝑥 ∉ 𝑥 |
| 5 | 2, 4 | 2th 174 | . . 3 ⊢ (𝑥 = 𝑥 ↔ 𝑥 ∉ 𝑥) |
| 6 | 5 | abbii 2322 | . 2 ⊢ {𝑥 ∣ 𝑥 = 𝑥} = {𝑥 ∣ 𝑥 ∉ 𝑥} |
| 7 | 1, 6 | eqtr2i 2228 | 1 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 {cab 2192 ∉ wnel 2472 Vcvv 2773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-setind 4593 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-v 2775 df-dif 3172 df-sn 3644 |
| This theorem is referenced by: ruALT 4607 |
| Copyright terms: Public domain | W3C validator |