Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ruv | GIF version |
Description: The Russell class is equal to the universe V. Exercise 5 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 4-Oct-2008.) |
Ref | Expression |
---|---|
ruv | ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-v 2714 | . 2 ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | |
2 | equid 1681 | . . . 4 ⊢ 𝑥 = 𝑥 | |
3 | elirrv 4509 | . . . . 5 ⊢ ¬ 𝑥 ∈ 𝑥 | |
4 | 3 | nelir 2425 | . . . 4 ⊢ 𝑥 ∉ 𝑥 |
5 | 2, 4 | 2th 173 | . . 3 ⊢ (𝑥 = 𝑥 ↔ 𝑥 ∉ 𝑥) |
6 | 5 | abbii 2273 | . 2 ⊢ {𝑥 ∣ 𝑥 = 𝑥} = {𝑥 ∣ 𝑥 ∉ 𝑥} |
7 | 1, 6 | eqtr2i 2179 | 1 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 {cab 2143 ∉ wnel 2422 Vcvv 2712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-setind 4498 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-v 2714 df-dif 3104 df-sn 3567 |
This theorem is referenced by: ruALT 4512 |
Copyright terms: Public domain | W3C validator |