ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ruv GIF version

Theorem ruv 4527
Description: The Russell class is equal to the universe V. Exercise 5 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 4-Oct-2008.)
Assertion
Ref Expression
ruv {𝑥𝑥𝑥} = V

Proof of Theorem ruv
StepHypRef Expression
1 df-v 2728 . 2 V = {𝑥𝑥 = 𝑥}
2 equid 1689 . . . 4 𝑥 = 𝑥
3 elirrv 4525 . . . . 5 ¬ 𝑥𝑥
43nelir 2434 . . . 4 𝑥𝑥
52, 42th 173 . . 3 (𝑥 = 𝑥𝑥𝑥)
65abbii 2282 . 2 {𝑥𝑥 = 𝑥} = {𝑥𝑥𝑥}
71, 6eqtr2i 2187 1 {𝑥𝑥𝑥} = V
Colors of variables: wff set class
Syntax hints:   = wceq 1343  {cab 2151  wnel 2431  Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-v 2728  df-dif 3118  df-sn 3582
This theorem is referenced by:  ruALT  4528
  Copyright terms: Public domain W3C validator