ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snexxph GIF version

Theorem snexxph 7113
Description: A case where the antecedent of snexg 4267 is not needed. The class {𝑥𝜑} is from dcextest 4672. (Contributed by Mario Carneiro and Jim Kingdon, 4-Jul-2022.)
Assertion
Ref Expression
snexxph {{𝑥𝜑}} ∈ V
Distinct variable group:   𝜑,𝑥

Proof of Theorem snexxph
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 1on 6567 . . 3 1o ∈ On
21elexi 2812 . 2 1o ∈ V
3 elsni 3684 . . . . 5 (𝑦 ∈ {{𝑥𝜑}} → 𝑦 = {𝑥𝜑})
4 vprc 4215 . . . . . . . 8 ¬ V ∈ V
5 df-v 2801 . . . . . . . . . 10 V = {𝑥𝑥 = 𝑥}
6 equid 1747 . . . . . . . . . . . 12 𝑥 = 𝑥
7 pm5.1im 173 . . . . . . . . . . . 12 (𝑥 = 𝑥 → (𝜑 → (𝑥 = 𝑥𝜑)))
86, 7ax-mp 5 . . . . . . . . . . 11 (𝜑 → (𝑥 = 𝑥𝜑))
98abbidv 2347 . . . . . . . . . 10 (𝜑 → {𝑥𝑥 = 𝑥} = {𝑥𝜑})
105, 9eqtr2id 2275 . . . . . . . . 9 (𝜑 → {𝑥𝜑} = V)
1110eleq1d 2298 . . . . . . . 8 (𝜑 → ({𝑥𝜑} ∈ V ↔ V ∈ V))
124, 11mtbiri 679 . . . . . . 7 (𝜑 → ¬ {𝑥𝜑} ∈ V)
13 19.8a 1636 . . . . . . . . 9 (𝑦 = {𝑥𝜑} → ∃𝑦 𝑦 = {𝑥𝜑})
143, 13syl 14 . . . . . . . 8 (𝑦 ∈ {{𝑥𝜑}} → ∃𝑦 𝑦 = {𝑥𝜑})
15 isset 2806 . . . . . . . 8 ({𝑥𝜑} ∈ V ↔ ∃𝑦 𝑦 = {𝑥𝜑})
1614, 15sylibr 134 . . . . . . 7 (𝑦 ∈ {{𝑥𝜑}} → {𝑥𝜑} ∈ V)
1712, 16nsyl3 629 . . . . . 6 (𝑦 ∈ {{𝑥𝜑}} → ¬ 𝜑)
18 vex 2802 . . . . . . . . . 10 𝑦 ∈ V
19 biidd 172 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝜑𝜑))
2018, 19elab 2947 . . . . . . . . 9 (𝑦 ∈ {𝑥𝜑} ↔ 𝜑)
2120notbii 672 . . . . . . . 8 𝑦 ∈ {𝑥𝜑} ↔ ¬ 𝜑)
2221biimpri 133 . . . . . . 7 𝜑 → ¬ 𝑦 ∈ {𝑥𝜑})
2322eq0rdv 3536 . . . . . 6 𝜑 → {𝑥𝜑} = ∅)
2417, 23syl 14 . . . . 5 (𝑦 ∈ {{𝑥𝜑}} → {𝑥𝜑} = ∅)
253, 24eqtrd 2262 . . . 4 (𝑦 ∈ {{𝑥𝜑}} → 𝑦 = ∅)
26 0lt1o 6584 . . . 4 ∅ ∈ 1o
2725, 26eqeltrdi 2320 . . 3 (𝑦 ∈ {{𝑥𝜑}} → 𝑦 ∈ 1o)
2827ssriv 3228 . 2 {{𝑥𝜑}} ⊆ 1o
292, 28ssexi 4221 1 {{𝑥𝜑}} ∈ V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105   = wceq 1395  wex 1538  wcel 2200  {cab 2215  Vcvv 2799  c0 3491  {csn 3666  Oncon0 4453  1oc1o 6553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-tr 4182  df-iord 4456  df-on 4458  df-suc 4461  df-1o 6560
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator