ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snexxph GIF version

Theorem snexxph 6978
Description: A case where the antecedent of snexg 4202 is not needed. The class {𝑥𝜑} is from dcextest 4598. (Contributed by Mario Carneiro and Jim Kingdon, 4-Jul-2022.)
Assertion
Ref Expression
snexxph {{𝑥𝜑}} ∈ V
Distinct variable group:   𝜑,𝑥

Proof of Theorem snexxph
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 1on 6447 . . 3 1o ∈ On
21elexi 2764 . 2 1o ∈ V
3 elsni 3625 . . . . 5 (𝑦 ∈ {{𝑥𝜑}} → 𝑦 = {𝑥𝜑})
4 vprc 4150 . . . . . . . 8 ¬ V ∈ V
5 df-v 2754 . . . . . . . . . 10 V = {𝑥𝑥 = 𝑥}
6 equid 1712 . . . . . . . . . . . 12 𝑥 = 𝑥
7 pm5.1im 173 . . . . . . . . . . . 12 (𝑥 = 𝑥 → (𝜑 → (𝑥 = 𝑥𝜑)))
86, 7ax-mp 5 . . . . . . . . . . 11 (𝜑 → (𝑥 = 𝑥𝜑))
98abbidv 2307 . . . . . . . . . 10 (𝜑 → {𝑥𝑥 = 𝑥} = {𝑥𝜑})
105, 9eqtr2id 2235 . . . . . . . . 9 (𝜑 → {𝑥𝜑} = V)
1110eleq1d 2258 . . . . . . . 8 (𝜑 → ({𝑥𝜑} ∈ V ↔ V ∈ V))
124, 11mtbiri 676 . . . . . . 7 (𝜑 → ¬ {𝑥𝜑} ∈ V)
13 19.8a 1601 . . . . . . . . 9 (𝑦 = {𝑥𝜑} → ∃𝑦 𝑦 = {𝑥𝜑})
143, 13syl 14 . . . . . . . 8 (𝑦 ∈ {{𝑥𝜑}} → ∃𝑦 𝑦 = {𝑥𝜑})
15 isset 2758 . . . . . . . 8 ({𝑥𝜑} ∈ V ↔ ∃𝑦 𝑦 = {𝑥𝜑})
1614, 15sylibr 134 . . . . . . 7 (𝑦 ∈ {{𝑥𝜑}} → {𝑥𝜑} ∈ V)
1712, 16nsyl3 627 . . . . . 6 (𝑦 ∈ {{𝑥𝜑}} → ¬ 𝜑)
18 vex 2755 . . . . . . . . . 10 𝑦 ∈ V
19 biidd 172 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝜑𝜑))
2018, 19elab 2896 . . . . . . . . 9 (𝑦 ∈ {𝑥𝜑} ↔ 𝜑)
2120notbii 669 . . . . . . . 8 𝑦 ∈ {𝑥𝜑} ↔ ¬ 𝜑)
2221biimpri 133 . . . . . . 7 𝜑 → ¬ 𝑦 ∈ {𝑥𝜑})
2322eq0rdv 3482 . . . . . 6 𝜑 → {𝑥𝜑} = ∅)
2417, 23syl 14 . . . . 5 (𝑦 ∈ {{𝑥𝜑}} → {𝑥𝜑} = ∅)
253, 24eqtrd 2222 . . . 4 (𝑦 ∈ {{𝑥𝜑}} → 𝑦 = ∅)
26 0lt1o 6464 . . . 4 ∅ ∈ 1o
2725, 26eqeltrdi 2280 . . 3 (𝑦 ∈ {{𝑥𝜑}} → 𝑦 ∈ 1o)
2827ssriv 3174 . 2 {{𝑥𝜑}} ⊆ 1o
292, 28ssexi 4156 1 {{𝑥𝜑}} ∈ V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105   = wceq 1364  wex 1503  wcel 2160  {cab 2175  Vcvv 2752  c0 3437  {csn 3607  Oncon0 4381  1oc1o 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-uni 3825  df-tr 4117  df-iord 4384  df-on 4386  df-suc 4389  df-1o 6440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator