ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snexxph GIF version

Theorem snexxph 6927
Description: A case where the antecedent of snexg 4170 is not needed. The class {𝑥𝜑} is from dcextest 4565. (Contributed by Mario Carneiro and Jim Kingdon, 4-Jul-2022.)
Assertion
Ref Expression
snexxph {{𝑥𝜑}} ∈ V
Distinct variable group:   𝜑,𝑥

Proof of Theorem snexxph
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 1on 6402 . . 3 1o ∈ On
21elexi 2742 . 2 1o ∈ V
3 elsni 3601 . . . . 5 (𝑦 ∈ {{𝑥𝜑}} → 𝑦 = {𝑥𝜑})
4 vprc 4121 . . . . . . . 8 ¬ V ∈ V
5 df-v 2732 . . . . . . . . . 10 V = {𝑥𝑥 = 𝑥}
6 equid 1694 . . . . . . . . . . . 12 𝑥 = 𝑥
7 pm5.1im 172 . . . . . . . . . . . 12 (𝑥 = 𝑥 → (𝜑 → (𝑥 = 𝑥𝜑)))
86, 7ax-mp 5 . . . . . . . . . . 11 (𝜑 → (𝑥 = 𝑥𝜑))
98abbidv 2288 . . . . . . . . . 10 (𝜑 → {𝑥𝑥 = 𝑥} = {𝑥𝜑})
105, 9eqtr2id 2216 . . . . . . . . 9 (𝜑 → {𝑥𝜑} = V)
1110eleq1d 2239 . . . . . . . 8 (𝜑 → ({𝑥𝜑} ∈ V ↔ V ∈ V))
124, 11mtbiri 670 . . . . . . 7 (𝜑 → ¬ {𝑥𝜑} ∈ V)
13 19.8a 1583 . . . . . . . . 9 (𝑦 = {𝑥𝜑} → ∃𝑦 𝑦 = {𝑥𝜑})
143, 13syl 14 . . . . . . . 8 (𝑦 ∈ {{𝑥𝜑}} → ∃𝑦 𝑦 = {𝑥𝜑})
15 isset 2736 . . . . . . . 8 ({𝑥𝜑} ∈ V ↔ ∃𝑦 𝑦 = {𝑥𝜑})
1614, 15sylibr 133 . . . . . . 7 (𝑦 ∈ {{𝑥𝜑}} → {𝑥𝜑} ∈ V)
1712, 16nsyl3 621 . . . . . 6 (𝑦 ∈ {{𝑥𝜑}} → ¬ 𝜑)
18 vex 2733 . . . . . . . . . 10 𝑦 ∈ V
19 biidd 171 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝜑𝜑))
2018, 19elab 2874 . . . . . . . . 9 (𝑦 ∈ {𝑥𝜑} ↔ 𝜑)
2120notbii 663 . . . . . . . 8 𝑦 ∈ {𝑥𝜑} ↔ ¬ 𝜑)
2221biimpri 132 . . . . . . 7 𝜑 → ¬ 𝑦 ∈ {𝑥𝜑})
2322eq0rdv 3459 . . . . . 6 𝜑 → {𝑥𝜑} = ∅)
2417, 23syl 14 . . . . 5 (𝑦 ∈ {{𝑥𝜑}} → {𝑥𝜑} = ∅)
253, 24eqtrd 2203 . . . 4 (𝑦 ∈ {{𝑥𝜑}} → 𝑦 = ∅)
26 0lt1o 6419 . . . 4 ∅ ∈ 1o
2725, 26eqeltrdi 2261 . . 3 (𝑦 ∈ {{𝑥𝜑}} → 𝑦 ∈ 1o)
2827ssriv 3151 . 2 {{𝑥𝜑}} ⊆ 1o
292, 28ssexi 4127 1 {{𝑥𝜑}} ∈ V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104   = wceq 1348  wex 1485  wcel 2141  {cab 2156  Vcvv 2730  c0 3414  {csn 3583  Oncon0 4348  1oc1o 6388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-tr 4088  df-iord 4351  df-on 4353  df-suc 4356  df-1o 6395
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator