ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snexxph GIF version

Theorem snexxph 6943
Description: A case where the antecedent of snexg 4181 is not needed. The class {𝑥𝜑} is from dcextest 4577. (Contributed by Mario Carneiro and Jim Kingdon, 4-Jul-2022.)
Assertion
Ref Expression
snexxph {{𝑥𝜑}} ∈ V
Distinct variable group:   𝜑,𝑥

Proof of Theorem snexxph
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 1on 6418 . . 3 1o ∈ On
21elexi 2749 . 2 1o ∈ V
3 elsni 3609 . . . . 5 (𝑦 ∈ {{𝑥𝜑}} → 𝑦 = {𝑥𝜑})
4 vprc 4132 . . . . . . . 8 ¬ V ∈ V
5 df-v 2739 . . . . . . . . . 10 V = {𝑥𝑥 = 𝑥}
6 equid 1701 . . . . . . . . . . . 12 𝑥 = 𝑥
7 pm5.1im 173 . . . . . . . . . . . 12 (𝑥 = 𝑥 → (𝜑 → (𝑥 = 𝑥𝜑)))
86, 7ax-mp 5 . . . . . . . . . . 11 (𝜑 → (𝑥 = 𝑥𝜑))
98abbidv 2295 . . . . . . . . . 10 (𝜑 → {𝑥𝑥 = 𝑥} = {𝑥𝜑})
105, 9eqtr2id 2223 . . . . . . . . 9 (𝜑 → {𝑥𝜑} = V)
1110eleq1d 2246 . . . . . . . 8 (𝜑 → ({𝑥𝜑} ∈ V ↔ V ∈ V))
124, 11mtbiri 675 . . . . . . 7 (𝜑 → ¬ {𝑥𝜑} ∈ V)
13 19.8a 1590 . . . . . . . . 9 (𝑦 = {𝑥𝜑} → ∃𝑦 𝑦 = {𝑥𝜑})
143, 13syl 14 . . . . . . . 8 (𝑦 ∈ {{𝑥𝜑}} → ∃𝑦 𝑦 = {𝑥𝜑})
15 isset 2743 . . . . . . . 8 ({𝑥𝜑} ∈ V ↔ ∃𝑦 𝑦 = {𝑥𝜑})
1614, 15sylibr 134 . . . . . . 7 (𝑦 ∈ {{𝑥𝜑}} → {𝑥𝜑} ∈ V)
1712, 16nsyl3 626 . . . . . 6 (𝑦 ∈ {{𝑥𝜑}} → ¬ 𝜑)
18 vex 2740 . . . . . . . . . 10 𝑦 ∈ V
19 biidd 172 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝜑𝜑))
2018, 19elab 2881 . . . . . . . . 9 (𝑦 ∈ {𝑥𝜑} ↔ 𝜑)
2120notbii 668 . . . . . . . 8 𝑦 ∈ {𝑥𝜑} ↔ ¬ 𝜑)
2221biimpri 133 . . . . . . 7 𝜑 → ¬ 𝑦 ∈ {𝑥𝜑})
2322eq0rdv 3467 . . . . . 6 𝜑 → {𝑥𝜑} = ∅)
2417, 23syl 14 . . . . 5 (𝑦 ∈ {{𝑥𝜑}} → {𝑥𝜑} = ∅)
253, 24eqtrd 2210 . . . 4 (𝑦 ∈ {{𝑥𝜑}} → 𝑦 = ∅)
26 0lt1o 6435 . . . 4 ∅ ∈ 1o
2725, 26eqeltrdi 2268 . . 3 (𝑦 ∈ {{𝑥𝜑}} → 𝑦 ∈ 1o)
2827ssriv 3159 . 2 {{𝑥𝜑}} ⊆ 1o
292, 28ssexi 4138 1 {{𝑥𝜑}} ∈ V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105   = wceq 1353  wex 1492  wcel 2148  {cab 2163  Vcvv 2737  c0 3422  {csn 3591  Oncon0 4360  1oc1o 6404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-uni 3808  df-tr 4099  df-iord 4363  df-on 4365  df-suc 4368  df-1o 6411
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator