| Step | Hyp | Ref
| Expression |
| 1 | | 1on 6481 |
. . 3
⊢
1o ∈ On |
| 2 | 1 | elexi 2775 |
. 2
⊢
1o ∈ V |
| 3 | | elsni 3640 |
. . . . 5
⊢ (𝑦 ∈ {{𝑥 ∣ 𝜑}} → 𝑦 = {𝑥 ∣ 𝜑}) |
| 4 | | vprc 4165 |
. . . . . . . 8
⊢ ¬ V
∈ V |
| 5 | | df-v 2765 |
. . . . . . . . . 10
⊢ V =
{𝑥 ∣ 𝑥 = 𝑥} |
| 6 | | equid 1715 |
. . . . . . . . . . . 12
⊢ 𝑥 = 𝑥 |
| 7 | | pm5.1im 173 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑥 → (𝜑 → (𝑥 = 𝑥 ↔ 𝜑))) |
| 8 | 6, 7 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 = 𝑥 ↔ 𝜑)) |
| 9 | 8 | abbidv 2314 |
. . . . . . . . . 10
⊢ (𝜑 → {𝑥 ∣ 𝑥 = 𝑥} = {𝑥 ∣ 𝜑}) |
| 10 | 5, 9 | eqtr2id 2242 |
. . . . . . . . 9
⊢ (𝜑 → {𝑥 ∣ 𝜑} = V) |
| 11 | 10 | eleq1d 2265 |
. . . . . . . 8
⊢ (𝜑 → ({𝑥 ∣ 𝜑} ∈ V ↔ V ∈
V)) |
| 12 | 4, 11 | mtbiri 676 |
. . . . . . 7
⊢ (𝜑 → ¬ {𝑥 ∣ 𝜑} ∈ V) |
| 13 | | 19.8a 1604 |
. . . . . . . . 9
⊢ (𝑦 = {𝑥 ∣ 𝜑} → ∃𝑦 𝑦 = {𝑥 ∣ 𝜑}) |
| 14 | 3, 13 | syl 14 |
. . . . . . . 8
⊢ (𝑦 ∈ {{𝑥 ∣ 𝜑}} → ∃𝑦 𝑦 = {𝑥 ∣ 𝜑}) |
| 15 | | isset 2769 |
. . . . . . . 8
⊢ ({𝑥 ∣ 𝜑} ∈ V ↔ ∃𝑦 𝑦 = {𝑥 ∣ 𝜑}) |
| 16 | 14, 15 | sylibr 134 |
. . . . . . 7
⊢ (𝑦 ∈ {{𝑥 ∣ 𝜑}} → {𝑥 ∣ 𝜑} ∈ V) |
| 17 | 12, 16 | nsyl3 627 |
. . . . . 6
⊢ (𝑦 ∈ {{𝑥 ∣ 𝜑}} → ¬ 𝜑) |
| 18 | | vex 2766 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
| 19 | | biidd 172 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜑)) |
| 20 | 18, 19 | elab 2908 |
. . . . . . . . 9
⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
| 21 | 20 | notbii 669 |
. . . . . . . 8
⊢ (¬
𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ¬ 𝜑) |
| 22 | 21 | biimpri 133 |
. . . . . . 7
⊢ (¬
𝜑 → ¬ 𝑦 ∈ {𝑥 ∣ 𝜑}) |
| 23 | 22 | eq0rdv 3495 |
. . . . . 6
⊢ (¬
𝜑 → {𝑥 ∣ 𝜑} = ∅) |
| 24 | 17, 23 | syl 14 |
. . . . 5
⊢ (𝑦 ∈ {{𝑥 ∣ 𝜑}} → {𝑥 ∣ 𝜑} = ∅) |
| 25 | 3, 24 | eqtrd 2229 |
. . . 4
⊢ (𝑦 ∈ {{𝑥 ∣ 𝜑}} → 𝑦 = ∅) |
| 26 | | 0lt1o 6498 |
. . . 4
⊢ ∅
∈ 1o |
| 27 | 25, 26 | eqeltrdi 2287 |
. . 3
⊢ (𝑦 ∈ {{𝑥 ∣ 𝜑}} → 𝑦 ∈ 1o) |
| 28 | 27 | ssriv 3187 |
. 2
⊢ {{𝑥 ∣ 𝜑}} ⊆ 1o |
| 29 | 2, 28 | ssexi 4171 |
1
⊢ {{𝑥 ∣ 𝜑}} ∈ V |