ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snexxph GIF version

Theorem snexxph 7009
Description: A case where the antecedent of snexg 4213 is not needed. The class {𝑥𝜑} is from dcextest 4613. (Contributed by Mario Carneiro and Jim Kingdon, 4-Jul-2022.)
Assertion
Ref Expression
snexxph {{𝑥𝜑}} ∈ V
Distinct variable group:   𝜑,𝑥

Proof of Theorem snexxph
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 1on 6476 . . 3 1o ∈ On
21elexi 2772 . 2 1o ∈ V
3 elsni 3636 . . . . 5 (𝑦 ∈ {{𝑥𝜑}} → 𝑦 = {𝑥𝜑})
4 vprc 4161 . . . . . . . 8 ¬ V ∈ V
5 df-v 2762 . . . . . . . . . 10 V = {𝑥𝑥 = 𝑥}
6 equid 1712 . . . . . . . . . . . 12 𝑥 = 𝑥
7 pm5.1im 173 . . . . . . . . . . . 12 (𝑥 = 𝑥 → (𝜑 → (𝑥 = 𝑥𝜑)))
86, 7ax-mp 5 . . . . . . . . . . 11 (𝜑 → (𝑥 = 𝑥𝜑))
98abbidv 2311 . . . . . . . . . 10 (𝜑 → {𝑥𝑥 = 𝑥} = {𝑥𝜑})
105, 9eqtr2id 2239 . . . . . . . . 9 (𝜑 → {𝑥𝜑} = V)
1110eleq1d 2262 . . . . . . . 8 (𝜑 → ({𝑥𝜑} ∈ V ↔ V ∈ V))
124, 11mtbiri 676 . . . . . . 7 (𝜑 → ¬ {𝑥𝜑} ∈ V)
13 19.8a 1601 . . . . . . . . 9 (𝑦 = {𝑥𝜑} → ∃𝑦 𝑦 = {𝑥𝜑})
143, 13syl 14 . . . . . . . 8 (𝑦 ∈ {{𝑥𝜑}} → ∃𝑦 𝑦 = {𝑥𝜑})
15 isset 2766 . . . . . . . 8 ({𝑥𝜑} ∈ V ↔ ∃𝑦 𝑦 = {𝑥𝜑})
1614, 15sylibr 134 . . . . . . 7 (𝑦 ∈ {{𝑥𝜑}} → {𝑥𝜑} ∈ V)
1712, 16nsyl3 627 . . . . . 6 (𝑦 ∈ {{𝑥𝜑}} → ¬ 𝜑)
18 vex 2763 . . . . . . . . . 10 𝑦 ∈ V
19 biidd 172 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝜑𝜑))
2018, 19elab 2904 . . . . . . . . 9 (𝑦 ∈ {𝑥𝜑} ↔ 𝜑)
2120notbii 669 . . . . . . . 8 𝑦 ∈ {𝑥𝜑} ↔ ¬ 𝜑)
2221biimpri 133 . . . . . . 7 𝜑 → ¬ 𝑦 ∈ {𝑥𝜑})
2322eq0rdv 3491 . . . . . 6 𝜑 → {𝑥𝜑} = ∅)
2417, 23syl 14 . . . . 5 (𝑦 ∈ {{𝑥𝜑}} → {𝑥𝜑} = ∅)
253, 24eqtrd 2226 . . . 4 (𝑦 ∈ {{𝑥𝜑}} → 𝑦 = ∅)
26 0lt1o 6493 . . . 4 ∅ ∈ 1o
2725, 26eqeltrdi 2284 . . 3 (𝑦 ∈ {{𝑥𝜑}} → 𝑦 ∈ 1o)
2827ssriv 3183 . 2 {{𝑥𝜑}} ⊆ 1o
292, 28ssexi 4167 1 {{𝑥𝜑}} ∈ V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105   = wceq 1364  wex 1503  wcel 2164  {cab 2179  Vcvv 2760  c0 3446  {csn 3618  Oncon0 4394  1oc1o 6462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-tr 4128  df-iord 4397  df-on 4399  df-suc 4402  df-1o 6469
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator