HomeHome Intuitionistic Logic Explorer
Theorem List (p. 28 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 2701-2800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcbvraldva 2701* Rule used to change the bound variable in a restricted universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑦𝐴 𝜒))
 
Theoremcbvrexdva 2702* Rule used to change the bound variable in a restricted existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑦𝐴 𝜒))
 
Theoremcbvral2vw 2703* Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvral2v 2705 with a disjoint variable condition, which does not require ax-13 2138. (Contributed by NM, 10-Aug-2004.) (Revised by Gino Giotto, 10-Jan-2024.)
(𝑥 = 𝑧 → (𝜑𝜒))    &   (𝑦 = 𝑤 → (𝜒𝜓))       (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑧𝐴𝑤𝐵 𝜓)
 
Theoremcbvrex2vw 2704* Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvrex2v 2706 with a disjoint variable condition, which does not require ax-13 2138. (Contributed by FL, 2-Jul-2012.) (Revised by Gino Giotto, 10-Jan-2024.)
(𝑥 = 𝑧 → (𝜑𝜒))    &   (𝑦 = 𝑤 → (𝜒𝜓))       (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑧𝐴𝑤𝐵 𝜓)
 
Theoremcbvral2v 2705* Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by NM, 10-Aug-2004.)
(𝑥 = 𝑧 → (𝜑𝜒))    &   (𝑦 = 𝑤 → (𝜒𝜓))       (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑧𝐴𝑤𝐵 𝜓)
 
Theoremcbvrex2v 2706* Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by FL, 2-Jul-2012.)
(𝑥 = 𝑧 → (𝜑𝜒))    &   (𝑦 = 𝑤 → (𝜒𝜓))       (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑧𝐴𝑤𝐵 𝜓)
 
Theoremcbvral3v 2707* Change bound variables of triple restricted universal quantification, using implicit substitution. (Contributed by NM, 10-May-2005.)
(𝑥 = 𝑤 → (𝜑𝜒))    &   (𝑦 = 𝑣 → (𝜒𝜃))    &   (𝑧 = 𝑢 → (𝜃𝜓))       (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑤𝐴𝑣𝐵𝑢𝐶 𝜓)
 
Theoremcbvralsv 2708* Change bound variable by using a substitution. (Contributed by NM, 20-Nov-2005.) (Revised by Andrew Salmon, 11-Jul-2011.)
(∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 [𝑦 / 𝑥]𝜑)
 
Theoremcbvrexsv 2709* Change bound variable by using a substitution. (Contributed by NM, 2-Mar-2008.) (Revised by Andrew Salmon, 11-Jul-2011.)
(∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 [𝑦 / 𝑥]𝜑)
 
Theoremsbralie 2710* Implicit to explicit substitution that swaps variables in a quantified expression. (Contributed by NM, 5-Sep-2004.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝑦 𝜑 ↔ [𝑦 / 𝑥]∀𝑦𝑥 𝜓)
 
Theoremrabbiia 2711 Equivalent wff's yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.)
(𝑥𝐴 → (𝜑𝜓))       {𝑥𝐴𝜑} = {𝑥𝐴𝜓}
 
Theoremrabbii 2712 Equivalent wff's correspond to equal restricted class abstractions. Inference form of rabbidv 2715. (Contributed by Peter Mazsa, 1-Nov-2019.)
(𝜑𝜓)       {𝑥𝐴𝜑} = {𝑥𝐴𝜓}
 
Theoremrabbidva2 2713* Equivalent wff's yield equal restricted class abstractions. (Contributed by Thierry Arnoux, 4-Feb-2017.)
(𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
 
Theoremrabbidva 2714* Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 28-Nov-2003.)
((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
 
Theoremrabbidv 2715* Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 10-Feb-1995.)
(𝜑 → (𝜓𝜒))       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
 
Theoremrabeqf 2716 Equality theorem for restricted class abstractions, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.)
𝑥𝐴    &   𝑥𝐵       (𝐴 = 𝐵 → {𝑥𝐴𝜑} = {𝑥𝐵𝜑})
 
Theoremrabeqif 2717 Equality theorem for restricted class abstractions. Inference form of rabeqf 2716. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝑥𝐴    &   𝑥𝐵    &   𝐴 = 𝐵       {𝑥𝐴𝜑} = {𝑥𝐵𝜑}
 
Theoremrabeq 2718* Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.)
(𝐴 = 𝐵 → {𝑥𝐴𝜑} = {𝑥𝐵𝜑})
 
Theoremrabeqi 2719* Equality theorem for restricted class abstractions. Inference form of rabeq 2718. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝐴 = 𝐵       {𝑥𝐴𝜑} = {𝑥𝐵𝜑}
 
Theoremrabeqdv 2720* Equality of restricted class abstractions. Deduction form of rabeq 2718. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝐴 = 𝐵)       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜓})
 
Theoremrabeqbidv 2721* Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.)
(𝜑𝐴 = 𝐵)    &   (𝜑 → (𝜓𝜒))       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
 
Theoremrabeqbidva 2722* Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017.)
(𝜑𝐴 = 𝐵)    &   ((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
 
Theoremrabeq2i 2723 Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.)
𝐴 = {𝑥𝐵𝜑}       (𝑥𝐴 ↔ (𝑥𝐵𝜑))
 
Theoremcbvrab 2724 Rule to change the bound variable in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 9-Oct-2016.)
𝑥𝐴    &   𝑦𝐴    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
 
Theoremcbvrabv 2725* Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.)
(𝑥 = 𝑦 → (𝜑𝜓))       {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
 
2.1.6  The universal class
 
Syntaxcvv 2726 Extend class notation to include the universal class symbol.
class V
 
Theoremvjust 2727 Soundness justification theorem for df-v 2728. (Contributed by Rodolfo Medina, 27-Apr-2010.)
{𝑥𝑥 = 𝑥} = {𝑦𝑦 = 𝑦}
 
Definitiondf-v 2728 Define the universal class. Definition 5.20 of [TakeutiZaring] p. 21. Also Definition 2.9 of [Quine] p. 19. (Contributed by NM, 5-Aug-1993.)
V = {𝑥𝑥 = 𝑥}
 
Theoremvex 2729 All setvar variables are sets (see isset 2732). Theorem 6.8 of [Quine] p. 43. (Contributed by NM, 5-Aug-1993.)
𝑥 ∈ V
 
Theoremelv 2730 Technical lemma used to shorten proofs. If a proposition is implied by 𝑥 ∈ V (which is true, see vex 2729), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.)
(𝑥 ∈ V → 𝜑)       𝜑
 
Theoremelvd 2731 Technical lemma used to shorten proofs. If a proposition is implied by 𝑥 ∈ V (which is true, see vex 2729) and another antecedent, then it is implied by the other antecedent. (Contributed by Peter Mazsa, 23-Oct-2018.)
((𝜑𝑥 ∈ V) → 𝜓)       (𝜑𝜓)
 
Theoremisset 2732* Two ways to say "𝐴 is a set": A class 𝐴 is a member of the universal class V (see df-v 2728) if and only if the class 𝐴 exists (i.e. there exists some set 𝑥 equal to class 𝐴). Theorem 6.9 of [Quine] p. 43. Notational convention: We will use the notational device "𝐴 ∈ V " to mean "𝐴 is a set" very frequently, for example in uniex 4415. Note the when 𝐴 is not a set, it is called a proper class. In some theorems, such as uniexg 4417, in order to shorten certain proofs we use the more general antecedent 𝐴𝑉 instead of 𝐴 ∈ V to mean "𝐴 is a set."

Note that a constant is implicitly considered distinct from all variables. This is why V is not included in the distinct variable list, even though df-clel 2161 requires that the expression substituted for 𝐵 not contain 𝑥. (Also, the Metamath spec does not allow constants in the distinct variable list.) (Contributed by NM, 26-May-1993.)

(𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
 
Theoremissetf 2733 A version of isset that does not require x and A to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.)
𝑥𝐴       (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
 
Theoremisseti 2734* A way to say "𝐴 is a set" (inference form). (Contributed by NM, 5-Aug-1993.)
𝐴 ∈ V       𝑥 𝑥 = 𝐴
 
Theoremissetri 2735* A way to say "𝐴 is a set" (inference form). (Contributed by NM, 5-Aug-1993.)
𝑥 𝑥 = 𝐴       𝐴 ∈ V
 
Theoremeqvisset 2736 A class equal to a variable is a set. Note the absence of disjoint variable condition, contrary to isset 2732 and issetri 2735. (Contributed by BJ, 27-Apr-2019.)
(𝑥 = 𝐴𝐴 ∈ V)
 
Theoremelex 2737 If a class is a member of another class, then it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
(𝐴𝐵𝐴 ∈ V)
 
Theoremelexi 2738 If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.)
𝐴𝐵       𝐴 ∈ V
 
Theoremelexd 2739 If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝐴𝑉)       (𝜑𝐴 ∈ V)
 
Theoremelisset 2740* An element of a class exists. (Contributed by NM, 1-May-1995.)
(𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
 
Theoremelex22 2741* If two classes each contain another class, then both contain some set. (Contributed by Alan Sare, 24-Oct-2011.)
((𝐴𝐵𝐴𝐶) → ∃𝑥(𝑥𝐵𝑥𝐶))
 
Theoremelex2 2742* If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.)
(𝐴𝐵 → ∃𝑥 𝑥𝐵)
 
Theoremralv 2743 A universal quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.)
(∀𝑥 ∈ V 𝜑 ↔ ∀𝑥𝜑)
 
Theoremrexv 2744 An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.)
(∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑)
 
Theoremreuv 2745 A unique existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010.)
(∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑)
 
Theoremrmov 2746 An at-most-one quantifier restricted to the universe is unrestricted. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
(∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥𝜑)
 
Theoremrabab 2747 A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
{𝑥 ∈ V ∣ 𝜑} = {𝑥𝜑}
 
Theoremralcom4 2748* Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
(∀𝑥𝐴𝑦𝜑 ↔ ∀𝑦𝑥𝐴 𝜑)
 
Theoremrexcom4 2749* Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
(∃𝑥𝐴𝑦𝜑 ↔ ∃𝑦𝑥𝐴 𝜑)
 
Theoremrexcom4a 2750* Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.)
(∃𝑥𝑦𝐴 (𝜑𝜓) ↔ ∃𝑦𝐴 (𝜑 ∧ ∃𝑥𝜓))
 
Theoremrexcom4b 2751* Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.)
𝐵 ∈ V       (∃𝑥𝑦𝐴 (𝜑𝑥 = 𝐵) ↔ ∃𝑦𝐴 𝜑)
 
Theoremceqsalt 2752* Closed theorem version of ceqsalg 2754. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theoremceqsralt 2753* Restricted quantifier version of ceqsalt 2752. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theoremceqsalg 2754* A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 29-Oct-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theoremceqsal 2755* A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.)
𝑥𝜓    &   𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
 
Theoremceqsalv 2756* A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.)
𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
 
Theoremceqsralv 2757* Restricted quantifier version of ceqsalv 2756. (Contributed by NM, 21-Jun-2013.)
(𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝐵 → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theoremgencl 2758* Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.)
(𝜃 ↔ ∃𝑥(𝜒𝐴 = 𝐵))    &   (𝐴 = 𝐵 → (𝜑𝜓))    &   (𝜒𝜑)       (𝜃𝜓)
 
Theorem2gencl 2759* Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.)
(𝐶𝑆 ↔ ∃𝑥𝑅 𝐴 = 𝐶)    &   (𝐷𝑆 ↔ ∃𝑦𝑅 𝐵 = 𝐷)    &   (𝐴 = 𝐶 → (𝜑𝜓))    &   (𝐵 = 𝐷 → (𝜓𝜒))    &   ((𝑥𝑅𝑦𝑅) → 𝜑)       ((𝐶𝑆𝐷𝑆) → 𝜒)
 
Theorem3gencl 2760* Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.)
(𝐷𝑆 ↔ ∃𝑥𝑅 𝐴 = 𝐷)    &   (𝐹𝑆 ↔ ∃𝑦𝑅 𝐵 = 𝐹)    &   (𝐺𝑆 ↔ ∃𝑧𝑅 𝐶 = 𝐺)    &   (𝐴 = 𝐷 → (𝜑𝜓))    &   (𝐵 = 𝐹 → (𝜓𝜒))    &   (𝐶 = 𝐺 → (𝜒𝜃))    &   ((𝑥𝑅𝑦𝑅𝑧𝑅) → 𝜑)       ((𝐷𝑆𝐹𝑆𝐺𝑆) → 𝜃)
 
Theoremcgsexg 2761* Implicit substitution inference for general classes. (Contributed by NM, 26-Aug-2007.)
(𝑥 = 𝐴𝜒)    &   (𝜒 → (𝜑𝜓))       (𝐴𝑉 → (∃𝑥(𝜒𝜑) ↔ 𝜓))
 
Theoremcgsex2g 2762* Implicit substitution inference for general classes. (Contributed by NM, 26-Jul-1995.)
((𝑥 = 𝐴𝑦 = 𝐵) → 𝜒)    &   (𝜒 → (𝜑𝜓))       ((𝐴𝑉𝐵𝑊) → (∃𝑥𝑦(𝜒𝜑) ↔ 𝜓))
 
Theoremcgsex4g 2763* An implicit substitution inference for 4 general classes. (Contributed by NM, 5-Aug-1995.)
(((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷)) → 𝜒)    &   (𝜒 → (𝜑𝜓))       (((𝐴𝑅𝐵𝑆) ∧ (𝐶𝑅𝐷𝑆)) → (∃𝑥𝑦𝑧𝑤(𝜒𝜑) ↔ 𝜓))
 
Theoremceqsex 2764* Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) (Revised by Mario Carneiro, 10-Oct-2016.)
𝑥𝜓    &   𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
 
Theoremceqsexv 2765* Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.)
𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
 
Theoremceqsex2 2766* Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.)
𝑥𝜓    &   𝑦𝜒    &   𝐴 ∈ V    &   𝐵 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))       (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ 𝜒)
 
Theoremceqsex2v 2767* Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.)
𝐴 ∈ V    &   𝐵 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))       (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ 𝜒)
 
Theoremceqsex3v 2768* Elimination of three existential quantifiers, using implicit substitution. (Contributed by NM, 16-Aug-2011.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   (𝑧 = 𝐶 → (𝜒𝜃))       (∃𝑥𝑦𝑧((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜑) ↔ 𝜃)
 
Theoremceqsex4v 2769* Elimination of four existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   (𝑧 = 𝐶 → (𝜒𝜃))    &   (𝑤 = 𝐷 → (𝜃𝜏))       (∃𝑥𝑦𝑧𝑤((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷) ∧ 𝜑) ↔ 𝜏)
 
Theoremceqsex6v 2770* Elimination of six existential quantifiers, using implicit substitution. (Contributed by NM, 21-Sep-2011.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V    &   𝐸 ∈ V    &   𝐹 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   (𝑧 = 𝐶 → (𝜒𝜃))    &   (𝑤 = 𝐷 → (𝜃𝜏))    &   (𝑣 = 𝐸 → (𝜏𝜂))    &   (𝑢 = 𝐹 → (𝜂𝜁))       (∃𝑥𝑦𝑧𝑤𝑣𝑢((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ (𝑤 = 𝐷𝑣 = 𝐸𝑢 = 𝐹) ∧ 𝜑) ↔ 𝜁)
 
Theoremceqsex8v 2771* Elimination of eight existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V    &   𝐸 ∈ V    &   𝐹 ∈ V    &   𝐺 ∈ V    &   𝐻 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   (𝑧 = 𝐶 → (𝜒𝜃))    &   (𝑤 = 𝐷 → (𝜃𝜏))    &   (𝑣 = 𝐸 → (𝜏𝜂))    &   (𝑢 = 𝐹 → (𝜂𝜁))    &   (𝑡 = 𝐺 → (𝜁𝜎))    &   (𝑠 = 𝐻 → (𝜎𝜌))       (∃𝑥𝑦𝑧𝑤𝑣𝑢𝑡𝑠(((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸𝑢 = 𝐹) ∧ (𝑡 = 𝐺𝑠 = 𝐻)) ∧ 𝜑) ↔ 𝜌)
 
Theoremgencbvex 2772* Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
𝐴 ∈ V    &   (𝐴 = 𝑦 → (𝜑𝜓))    &   (𝐴 = 𝑦 → (𝜒𝜃))    &   (𝜃 ↔ ∃𝑥(𝜒𝐴 = 𝑦))       (∃𝑥(𝜒𝜑) ↔ ∃𝑦(𝜃𝜓))
 
Theoremgencbvex2 2773* Restatement of gencbvex 2772 with weaker hypotheses. (Contributed by Jeff Hankins, 6-Dec-2006.)
𝐴 ∈ V    &   (𝐴 = 𝑦 → (𝜑𝜓))    &   (𝐴 = 𝑦 → (𝜒𝜃))    &   (𝜃 → ∃𝑥(𝜒𝐴 = 𝑦))       (∃𝑥(𝜒𝜑) ↔ ∃𝑦(𝜃𝜓))
 
Theoremgencbval 2774* Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996.) (Proof rewritten by Jim Kingdon, 20-Jun-2018.)
𝐴 ∈ V    &   (𝐴 = 𝑦 → (𝜑𝜓))    &   (𝐴 = 𝑦 → (𝜒𝜃))    &   (𝜃 ↔ ∃𝑥(𝜒𝐴 = 𝑦))       (∀𝑥(𝜒𝜑) ↔ ∀𝑦(𝜃𝜓))
 
Theoremsbhypf 2775* Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf . (Contributed by Raph Levien, 10-Apr-2004.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑𝜓))
 
Theoremvtoclgft 2776 Closed theorem form of vtoclgf 2784. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 12-Oct-2016.)
(((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴𝑉) → 𝜓)
 
Theoremvtocldf 2777 Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.)
(𝜑𝐴𝑉)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))    &   (𝜑𝜓)    &   𝑥𝜑    &   (𝜑𝑥𝐴)    &   (𝜑 → Ⅎ𝑥𝜒)       (𝜑𝜒)
 
Theoremvtocld 2778* Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.)
(𝜑𝐴𝑉)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))    &   (𝜑𝜓)       (𝜑𝜒)
 
Theoremvtoclf 2779* Implicit substitution of a class for a setvar variable. This is a generalization of chvar 1745. (Contributed by NM, 30-Aug-1993.)
𝑥𝜓    &   𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       𝜓
 
Theoremvtocl 2780* Implicit substitution of a class for a setvar variable. (Contributed by NM, 30-Aug-1993.)
𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       𝜓
 
Theoremvtocl2 2781* Implicit substitution of classes for setvar variables. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
𝐴 ∈ V    &   𝐵 ∈ V    &   ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))    &   𝜑       𝜓
 
Theoremvtocl3 2782* Implicit substitution of classes for setvar variables. (Contributed by NM, 3-Jun-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))    &   𝜑       𝜓
 
Theoremvtoclb 2783* Implicit substitution of a class for a setvar variable. (Contributed by NM, 23-Dec-1993.)
𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜒))    &   (𝑥 = 𝐴 → (𝜓𝜃))    &   (𝜑𝜓)       (𝜒𝜃)
 
Theoremvtoclgf 2784 Implicit substitution of a class for a setvar variable, with bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Proof shortened by Mario Carneiro, 10-Oct-2016.)
𝑥𝐴    &   𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       (𝐴𝑉𝜓)
 
Theoremvtoclg1f 2785* Version of vtoclgf 2784 with one nonfreeness hypothesis replaced with a disjoint variable condition, thus avoiding dependency on ax-11 1494 and ax-13 2138. (Contributed by BJ, 1-May-2019.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       (𝐴𝑉𝜓)
 
Theoremvtoclg 2786* Implicit substitution of a class expression for a setvar variable. (Contributed by NM, 17-Apr-1995.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       (𝐴𝑉𝜓)
 
Theoremvtoclbg 2787* Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.)
(𝑥 = 𝐴 → (𝜑𝜒))    &   (𝑥 = 𝐴 → (𝜓𝜃))    &   (𝜑𝜓)       (𝐴𝑉 → (𝜒𝜃))
 
Theoremvtocl2gf 2788 Implicit substitution of a class for a setvar variable. (Contributed by NM, 25-Apr-1995.)
𝑥𝐴    &   𝑦𝐴    &   𝑦𝐵    &   𝑥𝜓    &   𝑦𝜒    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   𝜑       ((𝐴𝑉𝐵𝑊) → 𝜒)
 
Theoremvtocl3gf 2789 Implicit substitution of a class for a setvar variable. (Contributed by NM, 10-Aug-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
𝑥𝐴    &   𝑦𝐴    &   𝑧𝐴    &   𝑦𝐵    &   𝑧𝐵    &   𝑧𝐶    &   𝑥𝜓    &   𝑦𝜒    &   𝑧𝜃    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   (𝑧 = 𝐶 → (𝜒𝜃))    &   𝜑       ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝜃)
 
Theoremvtocl2g 2790* Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   𝜑       ((𝐴𝑉𝐵𝑊) → 𝜒)
 
Theoremvtoclgaf 2791* Implicit substitution of a class for a setvar variable. (Contributed by NM, 17-Feb-2006.) (Revised by Mario Carneiro, 10-Oct-2016.)
𝑥𝐴    &   𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥𝐵𝜑)       (𝐴𝐵𝜓)
 
Theoremvtoclga 2792* Implicit substitution of a class for a setvar variable. (Contributed by NM, 20-Aug-1995.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥𝐵𝜑)       (𝐴𝐵𝜓)
 
Theoremvtocl2gaf 2793* Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 10-Aug-2013.)
𝑥𝐴    &   𝑦𝐴    &   𝑦𝐵    &   𝑥𝜓    &   𝑦𝜒    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   ((𝑥𝐶𝑦𝐷) → 𝜑)       ((𝐴𝐶𝐵𝐷) → 𝜒)
 
Theoremvtocl2ga 2794* Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 20-Aug-1995.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   ((𝑥𝐶𝑦𝐷) → 𝜑)       ((𝐴𝐶𝐵𝐷) → 𝜒)
 
Theoremvtocl3gaf 2795* Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 10-Aug-2013.) (Revised by Mario Carneiro, 11-Oct-2016.)
𝑥𝐴    &   𝑦𝐴    &   𝑧𝐴    &   𝑦𝐵    &   𝑧𝐵    &   𝑧𝐶    &   𝑥𝜓    &   𝑦𝜒    &   𝑧𝜃    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   (𝑧 = 𝐶 → (𝜒𝜃))    &   ((𝑥𝑅𝑦𝑆𝑧𝑇) → 𝜑)       ((𝐴𝑅𝐵𝑆𝐶𝑇) → 𝜃)
 
Theoremvtocl3ga 2796* Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 20-Aug-1995.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   (𝑧 = 𝐶 → (𝜒𝜃))    &   ((𝑥𝐷𝑦𝑅𝑧𝑆) → 𝜑)       ((𝐴𝐷𝐵𝑅𝐶𝑆) → 𝜃)
 
Theoremvtocleg 2797* Implicit substitution of a class for a setvar variable. (Contributed by NM, 10-Jan-2004.)
(𝑥 = 𝐴𝜑)       (𝐴𝑉𝜑)
 
Theoremvtoclegft 2798* Implicit substitution of a class for a setvar variable. (Closed theorem version of vtoclef 2799.) (Contributed by NM, 7-Nov-2005.) (Revised by Mario Carneiro, 11-Oct-2016.)
((𝐴𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴𝜑)) → 𝜑)
 
Theoremvtoclef 2799* Implicit substitution of a class for a setvar variable. (Contributed by NM, 18-Aug-1993.)
𝑥𝜑    &   𝐴 ∈ V    &   (𝑥 = 𝐴𝜑)       𝜑
 
Theoremvtocle 2800* Implicit substitution of a class for a setvar variable. (Contributed by NM, 9-Sep-1993.)
𝐴 ∈ V    &   (𝑥 = 𝐴𝜑)       𝜑
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >