| Intuitionistic Logic Explorer Theorem List (p. 28 of 164) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | rmobidv 2701* | Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑥 ∈ 𝐴 𝜒)) | ||
| Theorem | rmobiia 2702 | Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 16-Jun-2017.) |
| ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐴 𝜓) | ||
| Theorem | rmobii 2703 | Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 16-Jun-2017.) |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐴 𝜓) | ||
| Theorem | raleqf 2704 | Equality theorem for restricted universal quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.) (Revised by Andrew Salmon, 11-Jul-2011.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) | ||
| Theorem | rexeqf 2705 | Equality theorem for restricted existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 9-Oct-2003.) (Revised by Andrew Salmon, 11-Jul-2011.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) | ||
| Theorem | reueq1f 2706 | Equality theorem for restricted unique existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 5-Apr-2004.) (Revised by Andrew Salmon, 11-Jul-2011.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜑)) | ||
| Theorem | rmoeq1f 2707 | Equality theorem for restricted at-most-one quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐵 𝜑)) | ||
| Theorem | raleq 2708* | Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
| ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) | ||
| Theorem | rexeq 2709* | Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.) |
| ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) | ||
| Theorem | reueq1 2710* | Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.) |
| ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜑)) | ||
| Theorem | rmoeq1 2711* | Equality theorem for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| ⊢ (𝐴 = 𝐵 → (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐵 𝜑)) | ||
| Theorem | raleqi 2712* | Equality inference for restricted universal qualifier. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) | ||
| Theorem | rexeqi 2713* | Equality inference for restricted existential qualifier. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) | ||
| Theorem | raleqdv 2714* | Equality deduction for restricted universal quantifier. (Contributed by NM, 13-Nov-2005.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) | ||
| Theorem | rexeqdv 2715* | Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜓)) | ||
| Theorem | raleqtrdv 2716* | Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) | ||
| Theorem | rexeqtrdv 2717* | Substitution of equal classes into a restricted existential quantifier. (Contributed by Matthew House, 21-Jul-2025.) |
| ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) | ||
| Theorem | raleqtrrdv 2718* | Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) & ⊢ (𝜑 → 𝐵 = 𝐴) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) | ||
| Theorem | rexeqtrrdv 2719* | Substitution of equal classes into a restricted existential quantifier. (Contributed by Matthew House, 21-Jul-2025.) |
| ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) & ⊢ (𝜑 → 𝐵 = 𝐴) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) | ||
| Theorem | raleqbi1dv 2720* | Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
| ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) | ||
| Theorem | rexeqbi1dv 2721* | Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.) |
| ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) | ||
| Theorem | reueqd 2722* | Equality deduction for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.) |
| ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜓)) | ||
| Theorem | rmoeqd 2723* | Equality deduction for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 = 𝐵 → (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐵 𝜓)) | ||
| Theorem | raleqbidv 2724* | Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) | ||
| Theorem | rexeqbidv 2725* | Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) | ||
| Theorem | raleqbidva 2726* | Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) | ||
| Theorem | rexeqbidva 2727* | Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) | ||
| Theorem | mormo 2728 | Unrestricted "at most one" implies restricted "at most one". (Contributed by NM, 16-Jun-2017.) |
| ⊢ (∃*𝑥𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | reu5 2729 | Restricted uniqueness in terms of "at most one". (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.) |
| ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | reurex 2730 | Restricted unique existence implies restricted existence. (Contributed by NM, 19-Aug-1999.) |
| ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | reurmo 2731 | Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.) |
| ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rmo5 2732 | Restricted "at most one" in term of uniqueness. (Contributed by NM, 16-Jun-2017.) |
| ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 → ∃!𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | nrexrmo 2733 | Nonexistence implies restricted "at most one". (Contributed by NM, 17-Jun-2017.) |
| ⊢ (¬ ∃𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | cbvralfw 2734* | Rule used to change bound variables, using implicit substitution. Version of cbvralf 2736 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1533 and ax-bndl 1535 in the proof. (Contributed by NM, 7-Mar-2004.) (Revised by GG, 23-May-2024.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvrexfw 2735* | Rule used to change bound variables, using implicit substitution. Version of cbvrexf 2737 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1533 and ax-bndl 1535 in the proof. (Contributed by FL, 27-Apr-2008.) (Revised by GG, 10-Jan-2024.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvralf 2736 | Rule used to change bound variables, using implicit substitution. (Contributed by NM, 7-Mar-2004.) (Revised by Mario Carneiro, 9-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvrexf 2737 | Rule used to change bound variables, using implicit substitution. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 9-Oct-2016.) (Proof rewritten by Jim Kingdon, 10-Jun-2018.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvralw 2738* | Rule used to change bound variables, using implicit substitution. Version of cbvral 2741 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1533 and ax-bndl 1535 in the proof. (Contributed by NM, 31-Jul-2003.) (Revised by GG, 10-Jan-2024.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvrexw 2739* | Rule used to change bound variables, using implicit substitution. Version of cbvrexfw 2735 with more disjoint variable conditions. Although we don't do so yet, we expect the disjoint variable conditions will allow us to remove reliance on ax-i12 1533 and ax-bndl 1535 in the proof. (Contributed by NM, 31-Jul-2003.) (Revised by GG, 10-Jan-2024.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvreuw 2740* | Change the bound variable of a restricted unique existential quantifier using implicit substitution. Version of cbvreu 2743 with a disjoint variable condition. (Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by GG, 10-Jan-2024.) (Revised by Wolf Lammen, 10-Dec-2024.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvral 2741* | Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvrex 2742* | Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvreu 2743* | Change the bound variable of a restricted unique existential quantifier using implicit substitution. (Contributed by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvrmo 2744* | Change the bound variable of restricted "at most one" using implicit substitution. (Contributed by NM, 16-Jun-2017.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvralv 2745* | Change the bound variable of a restricted universal quantifier using implicit substitution. (Contributed by NM, 28-Jan-1997.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvrexv 2746* | Change the bound variable of a restricted existential quantifier using implicit substitution. (Contributed by NM, 2-Jun-1998.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvreuv 2747* | Change the bound variable of a restricted unique existential quantifier using implicit substitution. (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvrmov 2748* | Change the bound variable of a restricted at-most-one quantifier using implicit substitution. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvralvw 2749* | Version of cbvralv 2745 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvrexvw 2750* | Version of cbvrexv 2746 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvreuvw 2751* | Version of cbvreuv 2747 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvraldva2 2752* | Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) | ||
| Theorem | cbvrexdva2 2753* | Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) | ||
| Theorem | cbvraldva 2754* | Rule used to change the bound variable in a restricted universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑦 ∈ 𝐴 𝜒)) | ||
| Theorem | cbvrexdva 2755* | Rule used to change the bound variable in a restricted existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐴 𝜒)) | ||
| Theorem | cbvral2vw 2756* | Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvral2v 2758 with a disjoint variable condition, which does not require ax-13 2182. (Contributed by NM, 10-Aug-2004.) (Revised by GG, 10-Jan-2024.) |
| ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) | ||
| Theorem | cbvrex2vw 2757* | Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvrex2v 2759 with a disjoint variable condition, which does not require ax-13 2182. (Contributed by FL, 2-Jul-2012.) (Revised by GG, 10-Jan-2024.) |
| ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜓) | ||
| Theorem | cbvral2v 2758* | Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by NM, 10-Aug-2004.) |
| ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) | ||
| Theorem | cbvrex2v 2759* | Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by FL, 2-Jul-2012.) |
| ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜓) | ||
| Theorem | cbvral3v 2760* | Change bound variables of triple restricted universal quantification, using implicit substitution. (Contributed by NM, 10-May-2005.) |
| ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑣 → (𝜒 ↔ 𝜃)) & ⊢ (𝑧 = 𝑢 → (𝜃 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐶 𝜓) | ||
| Theorem | cbvralsv 2761* | Change bound variable by using a substitution. (Contributed by NM, 20-Nov-2005.) (Revised by Andrew Salmon, 11-Jul-2011.) |
| ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) | ||
| Theorem | cbvrexsv 2762* | Change bound variable by using a substitution. (Contributed by NM, 2-Mar-2008.) (Revised by Andrew Salmon, 11-Jul-2011.) |
| ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) | ||
| Theorem | sbralie 2763* | Implicit to explicit substitution that swaps variables in a quantified expression. (Contributed by NM, 5-Sep-2004.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝑦 𝜑 ↔ [𝑦 / 𝑥]∀𝑦 ∈ 𝑥 𝜓) | ||
| Theorem | rabbiia 2764 | Equivalent wff's yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.) |
| ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} | ||
| Theorem | rabbii 2765 | Equivalent wff's correspond to equal restricted class abstractions. Inference form of rabbidv 2768. (Contributed by Peter Mazsa, 1-Nov-2019.) |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} | ||
| Theorem | rabbidva2 2766* | Equivalent wff's yield equal restricted class abstractions. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
| ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
| Theorem | rabbidva 2767* | Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 28-Nov-2003.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
| Theorem | rabbidv 2768* | Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 10-Feb-1995.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
| Theorem | rabeqf 2769 | Equality theorem for restricted class abstractions, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) | ||
| Theorem | rabeqif 2770 | Equality theorem for restricted class abstractions. Inference form of rabeqf 2769. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ 𝐴 = 𝐵 ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} | ||
| Theorem | rabeq 2771* | Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) |
| ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) | ||
| Theorem | rabeqi 2772* | Equality theorem for restricted class abstractions. Inference form of rabeq 2771. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} | ||
| Theorem | rabeqdv 2773* | Equality of restricted class abstractions. Deduction form of rabeq 2771. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) | ||
| Theorem | rabeqbidv 2774* | Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
| Theorem | rabeqbidva 2775* | Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
| Theorem | rabeq2i 2776 | Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.) |
| ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} ⇒ ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) | ||
| Theorem | cbvrab 2777 | Rule to change the bound variable in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 9-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} | ||
| Theorem | cbvrabv 2778* | Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} | ||
| Syntax | cvv 2779 | Extend class notation to include the universal class symbol. |
| class V | ||
| Theorem | vjust 2780 | Soundness justification theorem for df-v 2781. (Contributed by Rodolfo Medina, 27-Apr-2010.) |
| ⊢ {𝑥 ∣ 𝑥 = 𝑥} = {𝑦 ∣ 𝑦 = 𝑦} | ||
| Definition | df-v 2781 | Define the universal class. Definition 5.20 of [TakeutiZaring] p. 21. Also Definition 2.9 of [Quine] p. 19. (Contributed by NM, 5-Aug-1993.) |
| ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | ||
| Theorem | vex 2782 | All setvar variables are sets (see isset 2786). Theorem 6.8 of [Quine] p. 43. (Contributed by NM, 5-Aug-1993.) |
| ⊢ 𝑥 ∈ V | ||
| Theorem | elv 2783 | Technical lemma used to shorten proofs. If a proposition is implied by 𝑥 ∈ V (which is true, see vex 2782), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
| ⊢ (𝑥 ∈ V → 𝜑) ⇒ ⊢ 𝜑 | ||
| Theorem | elvd 2784 | Technical lemma used to shorten proofs. If a proposition is implied by 𝑥 ∈ V (which is true, see vex 2782) and another antecedent, then it is implied by the other antecedent. (Contributed by Peter Mazsa, 23-Oct-2018.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ V) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | el2v 2785 | If a proposition is implied by 𝑥 ∈ V and 𝑦 ∈ V (which is true, see vex 2782), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
| ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑) ⇒ ⊢ 𝜑 | ||
| Theorem | isset 2786* |
Two ways to say "𝐴 is a set": A class 𝐴 is a
member of the
universal class V (see df-v 2781)
if and only if the class 𝐴
exists (i.e. there exists some set 𝑥 equal to class 𝐴).
Theorem 6.9 of [Quine] p. 43.
Notational convention: We will use the
notational device "𝐴 ∈ V " to mean "𝐴 is a
set" very
frequently, for example in uniex 4505. Note the when 𝐴 is not
a set,
it is called a proper class. In some theorems, such as uniexg 4507, in
order to shorten certain proofs we use the more general antecedent
𝐴
∈ 𝑉 instead of
𝐴 ∈
V to mean "𝐴 is a set."
Note that a constant is implicitly considered distinct from all variables. This is why V is not included in the distinct variable list, even though df-clel 2205 requires that the expression substituted for 𝐵 not contain 𝑥. (Also, the Metamath spec does not allow constants in the distinct variable list.) (Contributed by NM, 26-May-1993.) |
| ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | ||
| Theorem | issetf 2787 | A version of isset that does not require x and A to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | ||
| Theorem | isseti 2788* | A way to say "𝐴 is a set" (inference form). (Contributed by NM, 5-Aug-1993.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ∃𝑥 𝑥 = 𝐴 | ||
| Theorem | issetri 2789* | A way to say "𝐴 is a set" (inference form). (Contributed by NM, 5-Aug-1993.) |
| ⊢ ∃𝑥 𝑥 = 𝐴 ⇒ ⊢ 𝐴 ∈ V | ||
| Theorem | eqvisset 2790 | A class equal to a variable is a set. Note the absence of disjoint variable condition, contrary to isset 2786 and issetri 2789. (Contributed by BJ, 27-Apr-2019.) |
| ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) | ||
| Theorem | elex 2791 | If a class is a member of another class, then it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | ||
| Theorem | elexi 2792 | If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.) |
| ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ 𝐴 ∈ V | ||
| Theorem | elexd 2793 | If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐴 ∈ V) | ||
| Theorem | elisset 2794* | An element of a class exists. (Contributed by NM, 1-May-1995.) |
| ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | ||
| Theorem | elex22 2795* | If two classes each contain another class, then both contain some set. (Contributed by Alan Sare, 24-Oct-2011.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | ||
| Theorem | elex2 2796* | If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.) |
| ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) | ||
| Theorem | ralv 2797 | A universal quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) |
| ⊢ (∀𝑥 ∈ V 𝜑 ↔ ∀𝑥𝜑) | ||
| Theorem | rexv 2798 | An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) |
| ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) | ||
| Theorem | reuv 2799 | A unique existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010.) |
| ⊢ (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑) | ||
| Theorem | rmov 2800 | An at-most-one quantifier restricted to the universe is unrestricted. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| ⊢ (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥𝜑) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |