| Intuitionistic Logic Explorer Theorem List (p. 28 of 161) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | reueq1f 2701 | Equality theorem for restricted unique existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 5-Apr-2004.) (Revised by Andrew Salmon, 11-Jul-2011.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜑)) | ||
| Theorem | rmoeq1f 2702 | Equality theorem for restricted at-most-one quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐵 𝜑)) | ||
| Theorem | raleq 2703* | Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
| ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) | ||
| Theorem | rexeq 2704* | Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.) |
| ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) | ||
| Theorem | reueq1 2705* | Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.) |
| ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜑)) | ||
| Theorem | rmoeq1 2706* | Equality theorem for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| ⊢ (𝐴 = 𝐵 → (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐵 𝜑)) | ||
| Theorem | raleqi 2707* | Equality inference for restricted universal qualifier. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) | ||
| Theorem | rexeqi 2708* | Equality inference for restricted existential qualifier. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) | ||
| Theorem | raleqdv 2709* | Equality deduction for restricted universal quantifier. (Contributed by NM, 13-Nov-2005.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) | ||
| Theorem | rexeqdv 2710* | Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜓)) | ||
| Theorem | raleqtrdv 2711* | Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) | ||
| Theorem | rexeqtrdv 2712* | Substitution of equal classes into a restricted existential quantifier. (Contributed by Matthew House, 21-Jul-2025.) |
| ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) | ||
| Theorem | raleqtrrdv 2713* | Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) & ⊢ (𝜑 → 𝐵 = 𝐴) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) | ||
| Theorem | rexeqtrrdv 2714* | Substitution of equal classes into a restricted existential quantifier. (Contributed by Matthew House, 21-Jul-2025.) |
| ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) & ⊢ (𝜑 → 𝐵 = 𝐴) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) | ||
| Theorem | raleqbi1dv 2715* | Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
| ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) | ||
| Theorem | rexeqbi1dv 2716* | Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.) |
| ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) | ||
| Theorem | reueqd 2717* | Equality deduction for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.) |
| ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜓)) | ||
| Theorem | rmoeqd 2718* | Equality deduction for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 = 𝐵 → (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐵 𝜓)) | ||
| Theorem | raleqbidv 2719* | Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) | ||
| Theorem | rexeqbidv 2720* | Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) | ||
| Theorem | raleqbidva 2721* | Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) | ||
| Theorem | rexeqbidva 2722* | Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) | ||
| Theorem | mormo 2723 | Unrestricted "at most one" implies restricted "at most one". (Contributed by NM, 16-Jun-2017.) |
| ⊢ (∃*𝑥𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | reu5 2724 | Restricted uniqueness in terms of "at most one". (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.) |
| ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | reurex 2725 | Restricted unique existence implies restricted existence. (Contributed by NM, 19-Aug-1999.) |
| ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | reurmo 2726 | Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.) |
| ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rmo5 2727 | Restricted "at most one" in term of uniqueness. (Contributed by NM, 16-Jun-2017.) |
| ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 → ∃!𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | nrexrmo 2728 | Nonexistence implies restricted "at most one". (Contributed by NM, 17-Jun-2017.) |
| ⊢ (¬ ∃𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | cbvralfw 2729* | Rule used to change bound variables, using implicit substitution. Version of cbvralf 2731 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1531 and ax-bndl 1533 in the proof. (Contributed by NM, 7-Mar-2004.) (Revised by GG, 23-May-2024.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvrexfw 2730* | Rule used to change bound variables, using implicit substitution. Version of cbvrexf 2732 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1531 and ax-bndl 1533 in the proof. (Contributed by FL, 27-Apr-2008.) (Revised by GG, 10-Jan-2024.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvralf 2731 | Rule used to change bound variables, using implicit substitution. (Contributed by NM, 7-Mar-2004.) (Revised by Mario Carneiro, 9-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvrexf 2732 | Rule used to change bound variables, using implicit substitution. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 9-Oct-2016.) (Proof rewritten by Jim Kingdon, 10-Jun-2018.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvralw 2733* | Rule used to change bound variables, using implicit substitution. Version of cbvral 2735 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1531 and ax-bndl 1533 in the proof. (Contributed by NM, 31-Jul-2003.) (Revised by GG, 10-Jan-2024.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvrexw 2734* | Rule used to change bound variables, using implicit substitution. Version of cbvrexfw 2730 with more disjoint variable conditions. Although we don't do so yet, we expect the disjoint variable conditions will allow us to remove reliance on ax-i12 1531 and ax-bndl 1533 in the proof. (Contributed by NM, 31-Jul-2003.) (Revised by GG, 10-Jan-2024.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvral 2735* | Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvrex 2736* | Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvreu 2737* | Change the bound variable of a restricted unique existential quantifier using implicit substitution. (Contributed by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvrmo 2738* | Change the bound variable of restricted "at most one" using implicit substitution. (Contributed by NM, 16-Jun-2017.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvralv 2739* | Change the bound variable of a restricted universal quantifier using implicit substitution. (Contributed by NM, 28-Jan-1997.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvrexv 2740* | Change the bound variable of a restricted existential quantifier using implicit substitution. (Contributed by NM, 2-Jun-1998.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvreuv 2741* | Change the bound variable of a restricted unique existential quantifier using implicit substitution. (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvrmov 2742* | Change the bound variable of a restricted at-most-one quantifier using implicit substitution. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvralvw 2743* | Version of cbvralv 2739 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvrexvw 2744* | Version of cbvrexv 2740 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvreuvw 2745* | Version of cbvreuv 2741 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvraldva2 2746* | Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) | ||
| Theorem | cbvrexdva2 2747* | Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) | ||
| Theorem | cbvraldva 2748* | Rule used to change the bound variable in a restricted universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑦 ∈ 𝐴 𝜒)) | ||
| Theorem | cbvrexdva 2749* | Rule used to change the bound variable in a restricted existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐴 𝜒)) | ||
| Theorem | cbvral2vw 2750* | Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvral2v 2752 with a disjoint variable condition, which does not require ax-13 2179. (Contributed by NM, 10-Aug-2004.) (Revised by GG, 10-Jan-2024.) |
| ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) | ||
| Theorem | cbvrex2vw 2751* | Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvrex2v 2753 with a disjoint variable condition, which does not require ax-13 2179. (Contributed by FL, 2-Jul-2012.) (Revised by GG, 10-Jan-2024.) |
| ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜓) | ||
| Theorem | cbvral2v 2752* | Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by NM, 10-Aug-2004.) |
| ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) | ||
| Theorem | cbvrex2v 2753* | Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by FL, 2-Jul-2012.) |
| ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜓) | ||
| Theorem | cbvral3v 2754* | Change bound variables of triple restricted universal quantification, using implicit substitution. (Contributed by NM, 10-May-2005.) |
| ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑣 → (𝜒 ↔ 𝜃)) & ⊢ (𝑧 = 𝑢 → (𝜃 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐶 𝜓) | ||
| Theorem | cbvralsv 2755* | Change bound variable by using a substitution. (Contributed by NM, 20-Nov-2005.) (Revised by Andrew Salmon, 11-Jul-2011.) |
| ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) | ||
| Theorem | cbvrexsv 2756* | Change bound variable by using a substitution. (Contributed by NM, 2-Mar-2008.) (Revised by Andrew Salmon, 11-Jul-2011.) |
| ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) | ||
| Theorem | sbralie 2757* | Implicit to explicit substitution that swaps variables in a quantified expression. (Contributed by NM, 5-Sep-2004.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝑦 𝜑 ↔ [𝑦 / 𝑥]∀𝑦 ∈ 𝑥 𝜓) | ||
| Theorem | rabbiia 2758 | Equivalent wff's yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.) |
| ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} | ||
| Theorem | rabbii 2759 | Equivalent wff's correspond to equal restricted class abstractions. Inference form of rabbidv 2762. (Contributed by Peter Mazsa, 1-Nov-2019.) |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} | ||
| Theorem | rabbidva2 2760* | Equivalent wff's yield equal restricted class abstractions. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
| ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
| Theorem | rabbidva 2761* | Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 28-Nov-2003.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
| Theorem | rabbidv 2762* | Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 10-Feb-1995.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
| Theorem | rabeqf 2763 | Equality theorem for restricted class abstractions, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) | ||
| Theorem | rabeqif 2764 | Equality theorem for restricted class abstractions. Inference form of rabeqf 2763. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ 𝐴 = 𝐵 ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} | ||
| Theorem | rabeq 2765* | Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) |
| ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) | ||
| Theorem | rabeqi 2766* | Equality theorem for restricted class abstractions. Inference form of rabeq 2765. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} | ||
| Theorem | rabeqdv 2767* | Equality of restricted class abstractions. Deduction form of rabeq 2765. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) | ||
| Theorem | rabeqbidv 2768* | Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
| Theorem | rabeqbidva 2769* | Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
| Theorem | rabeq2i 2770 | Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.) |
| ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} ⇒ ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) | ||
| Theorem | cbvrab 2771 | Rule to change the bound variable in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 9-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} | ||
| Theorem | cbvrabv 2772* | Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} | ||
| Syntax | cvv 2773 | Extend class notation to include the universal class symbol. |
| class V | ||
| Theorem | vjust 2774 | Soundness justification theorem for df-v 2775. (Contributed by Rodolfo Medina, 27-Apr-2010.) |
| ⊢ {𝑥 ∣ 𝑥 = 𝑥} = {𝑦 ∣ 𝑦 = 𝑦} | ||
| Definition | df-v 2775 | Define the universal class. Definition 5.20 of [TakeutiZaring] p. 21. Also Definition 2.9 of [Quine] p. 19. (Contributed by NM, 5-Aug-1993.) |
| ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | ||
| Theorem | vex 2776 | All setvar variables are sets (see isset 2779). Theorem 6.8 of [Quine] p. 43. (Contributed by NM, 5-Aug-1993.) |
| ⊢ 𝑥 ∈ V | ||
| Theorem | elv 2777 | Technical lemma used to shorten proofs. If a proposition is implied by 𝑥 ∈ V (which is true, see vex 2776), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
| ⊢ (𝑥 ∈ V → 𝜑) ⇒ ⊢ 𝜑 | ||
| Theorem | elvd 2778 | Technical lemma used to shorten proofs. If a proposition is implied by 𝑥 ∈ V (which is true, see vex 2776) and another antecedent, then it is implied by the other antecedent. (Contributed by Peter Mazsa, 23-Oct-2018.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ V) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | isset 2779* |
Two ways to say "𝐴 is a set": A class 𝐴 is a
member of the
universal class V (see df-v 2775)
if and only if the class 𝐴
exists (i.e. there exists some set 𝑥 equal to class 𝐴).
Theorem 6.9 of [Quine] p. 43.
Notational convention: We will use the
notational device "𝐴 ∈ V " to mean "𝐴 is a
set" very
frequently, for example in uniex 4488. Note the when 𝐴 is not
a set,
it is called a proper class. In some theorems, such as uniexg 4490, in
order to shorten certain proofs we use the more general antecedent
𝐴
∈ 𝑉 instead of
𝐴 ∈
V to mean "𝐴 is a set."
Note that a constant is implicitly considered distinct from all variables. This is why V is not included in the distinct variable list, even though df-clel 2202 requires that the expression substituted for 𝐵 not contain 𝑥. (Also, the Metamath spec does not allow constants in the distinct variable list.) (Contributed by NM, 26-May-1993.) |
| ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | ||
| Theorem | issetf 2780 | A version of isset that does not require x and A to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | ||
| Theorem | isseti 2781* | A way to say "𝐴 is a set" (inference form). (Contributed by NM, 5-Aug-1993.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ∃𝑥 𝑥 = 𝐴 | ||
| Theorem | issetri 2782* | A way to say "𝐴 is a set" (inference form). (Contributed by NM, 5-Aug-1993.) |
| ⊢ ∃𝑥 𝑥 = 𝐴 ⇒ ⊢ 𝐴 ∈ V | ||
| Theorem | eqvisset 2783 | A class equal to a variable is a set. Note the absence of disjoint variable condition, contrary to isset 2779 and issetri 2782. (Contributed by BJ, 27-Apr-2019.) |
| ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) | ||
| Theorem | elex 2784 | If a class is a member of another class, then it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | ||
| Theorem | elexi 2785 | If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.) |
| ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ 𝐴 ∈ V | ||
| Theorem | elexd 2786 | If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐴 ∈ V) | ||
| Theorem | elisset 2787* | An element of a class exists. (Contributed by NM, 1-May-1995.) |
| ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | ||
| Theorem | elex22 2788* | If two classes each contain another class, then both contain some set. (Contributed by Alan Sare, 24-Oct-2011.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | ||
| Theorem | elex2 2789* | If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.) |
| ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) | ||
| Theorem | ralv 2790 | A universal quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) |
| ⊢ (∀𝑥 ∈ V 𝜑 ↔ ∀𝑥𝜑) | ||
| Theorem | rexv 2791 | An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) |
| ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) | ||
| Theorem | reuv 2792 | A unique existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010.) |
| ⊢ (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑) | ||
| Theorem | rmov 2793 | An at-most-one quantifier restricted to the universe is unrestricted. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| ⊢ (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥𝜑) | ||
| Theorem | rabab 2794 | A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| ⊢ {𝑥 ∈ V ∣ 𝜑} = {𝑥 ∣ 𝜑} | ||
| Theorem | ralcom4 2795* | Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rexcom4 2796* | Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rexcom4a 2797* | Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.) |
| ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥𝜓)) | ||
| Theorem | rexcom4b 2798* | Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 𝜑) | ||
| Theorem | ceqsalt 2799* | Closed theorem version of ceqsalg 2801. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.) |
| ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
| Theorem | ceqsralt 2800* | Restricted quantifier version of ceqsalt 2799. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.) |
| ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |