HomeHome Intuitionistic Logic Explorer
Theorem List (p. 28 of 156)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 2701-2800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrexeqtrrdv 2701* Substitution of equal classes into a restricted existential quantifier. (Contributed by Matthew House, 21-Jul-2025.)
(𝜑 → ∃𝑥𝐴 𝜓)    &   (𝜑𝐵 = 𝐴)       (𝜑 → ∃𝑥𝐵 𝜓)
 
Theoremraleqbi1dv 2702* Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.)
(𝐴 = 𝐵 → (𝜑𝜓))       (𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜓))
 
Theoremrexeqbi1dv 2703* Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.)
(𝐴 = 𝐵 → (𝜑𝜓))       (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓))
 
Theoremreueqd 2704* Equality deduction for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.)
(𝐴 = 𝐵 → (𝜑𝜓))       (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜓))
 
Theoremrmoeqd 2705* Equality deduction for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
(𝐴 = 𝐵 → (𝜑𝜓))       (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜓))
 
Theoremraleqbidv 2706* Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.)
(𝜑𝐴 = 𝐵)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))
 
Theoremrexeqbidv 2707* Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.)
(𝜑𝐴 = 𝐵)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜒))
 
Theoremraleqbidva 2708* Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.)
(𝜑𝐴 = 𝐵)    &   ((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))
 
Theoremrexeqbidva 2709* Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.)
(𝜑𝐴 = 𝐵)    &   ((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜒))
 
Theoremmormo 2710 Unrestricted "at most one" implies restricted "at most one". (Contributed by NM, 16-Jun-2017.)
(∃*𝑥𝜑 → ∃*𝑥𝐴 𝜑)
 
Theoremreu5 2711 Restricted uniqueness in terms of "at most one". (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.)
(∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))
 
Theoremreurex 2712 Restricted unique existence implies restricted existence. (Contributed by NM, 19-Aug-1999.)
(∃!𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜑)
 
Theoremreurmo 2713 Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.)
(∃!𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)
 
Theoremrmo5 2714 Restricted "at most one" in term of uniqueness. (Contributed by NM, 16-Jun-2017.)
(∃*𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑))
 
Theoremnrexrmo 2715 Nonexistence implies restricted "at most one". (Contributed by NM, 17-Jun-2017.)
(¬ ∃𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)
 
Theoremcbvralfw 2716* Rule used to change bound variables, using implicit substitution. Version of cbvralf 2718 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1518 and ax-bndl 1520 in the proof. (Contributed by NM, 7-Mar-2004.) (Revised by GG, 23-May-2024.)
𝑥𝐴    &   𝑦𝐴    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
 
Theoremcbvrexfw 2717* Rule used to change bound variables, using implicit substitution. Version of cbvrexf 2719 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1518 and ax-bndl 1520 in the proof. (Contributed by FL, 27-Apr-2008.) (Revised by GG, 10-Jan-2024.)
𝑥𝐴    &   𝑦𝐴    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
 
Theoremcbvralf 2718 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 7-Mar-2004.) (Revised by Mario Carneiro, 9-Oct-2016.)
𝑥𝐴    &   𝑦𝐴    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
 
Theoremcbvrexf 2719 Rule used to change bound variables, using implicit substitution. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 9-Oct-2016.) (Proof rewritten by Jim Kingdon, 10-Jun-2018.)
𝑥𝐴    &   𝑦𝐴    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
 
Theoremcbvralw 2720* Rule used to change bound variables, using implicit substitution. Version of cbvral 2722 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1518 and ax-bndl 1520 in the proof. (Contributed by NM, 31-Jul-2003.) (Revised by GG, 10-Jan-2024.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
 
Theoremcbvrexw 2721* Rule used to change bound variables, using implicit substitution. Version of cbvrexfw 2717 with more disjoint variable conditions. Although we don't do so yet, we expect the disjoint variable conditions will allow us to remove reliance on ax-i12 1518 and ax-bndl 1520 in the proof. (Contributed by NM, 31-Jul-2003.) (Revised by GG, 10-Jan-2024.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
 
Theoremcbvral 2722* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
 
Theoremcbvrex 2723* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
 
Theoremcbvreu 2724* Change the bound variable of a restricted unique existential quantifier using implicit substitution. (Contributed by Mario Carneiro, 15-Oct-2016.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
 
Theoremcbvrmo 2725* Change the bound variable of restricted "at most one" using implicit substitution. (Contributed by NM, 16-Jun-2017.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃*𝑥𝐴 𝜑 ↔ ∃*𝑦𝐴 𝜓)
 
Theoremcbvralv 2726* Change the bound variable of a restricted universal quantifier using implicit substitution. (Contributed by NM, 28-Jan-1997.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
 
Theoremcbvrexv 2727* Change the bound variable of a restricted existential quantifier using implicit substitution. (Contributed by NM, 2-Jun-1998.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
 
Theoremcbvreuv 2728* Change the bound variable of a restricted unique existential quantifier using implicit substitution. (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
 
Theoremcbvrmov 2729* Change the bound variable of a restricted at-most-one quantifier using implicit substitution. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃*𝑥𝐴 𝜑 ↔ ∃*𝑦𝐴 𝜓)
 
Theoremcbvralvw 2730* Version of cbvralv 2726 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
 
Theoremcbvrexvw 2731* Version of cbvrexv 2727 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
 
Theoremcbvreuvw 2732* Version of cbvreuv 2728 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
 
Theoremcbvraldva2 2733* Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))    &   ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐵)       (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑦𝐵 𝜒))
 
Theoremcbvrexdva2 2734* Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))    &   ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐵)       (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑦𝐵 𝜒))
 
Theoremcbvraldva 2735* Rule used to change the bound variable in a restricted universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑦𝐴 𝜒))
 
Theoremcbvrexdva 2736* Rule used to change the bound variable in a restricted existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑦𝐴 𝜒))
 
Theoremcbvral2vw 2737* Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvral2v 2739 with a disjoint variable condition, which does not require ax-13 2166. (Contributed by NM, 10-Aug-2004.) (Revised by GG, 10-Jan-2024.)
(𝑥 = 𝑧 → (𝜑𝜒))    &   (𝑦 = 𝑤 → (𝜒𝜓))       (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑧𝐴𝑤𝐵 𝜓)
 
Theoremcbvrex2vw 2738* Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvrex2v 2740 with a disjoint variable condition, which does not require ax-13 2166. (Contributed by FL, 2-Jul-2012.) (Revised by GG, 10-Jan-2024.)
(𝑥 = 𝑧 → (𝜑𝜒))    &   (𝑦 = 𝑤 → (𝜒𝜓))       (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑧𝐴𝑤𝐵 𝜓)
 
Theoremcbvral2v 2739* Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by NM, 10-Aug-2004.)
(𝑥 = 𝑧 → (𝜑𝜒))    &   (𝑦 = 𝑤 → (𝜒𝜓))       (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑧𝐴𝑤𝐵 𝜓)
 
Theoremcbvrex2v 2740* Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by FL, 2-Jul-2012.)
(𝑥 = 𝑧 → (𝜑𝜒))    &   (𝑦 = 𝑤 → (𝜒𝜓))       (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑧𝐴𝑤𝐵 𝜓)
 
Theoremcbvral3v 2741* Change bound variables of triple restricted universal quantification, using implicit substitution. (Contributed by NM, 10-May-2005.)
(𝑥 = 𝑤 → (𝜑𝜒))    &   (𝑦 = 𝑣 → (𝜒𝜃))    &   (𝑧 = 𝑢 → (𝜃𝜓))       (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑤𝐴𝑣𝐵𝑢𝐶 𝜓)
 
Theoremcbvralsv 2742* Change bound variable by using a substitution. (Contributed by NM, 20-Nov-2005.) (Revised by Andrew Salmon, 11-Jul-2011.)
(∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 [𝑦 / 𝑥]𝜑)
 
Theoremcbvrexsv 2743* Change bound variable by using a substitution. (Contributed by NM, 2-Mar-2008.) (Revised by Andrew Salmon, 11-Jul-2011.)
(∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 [𝑦 / 𝑥]𝜑)
 
Theoremsbralie 2744* Implicit to explicit substitution that swaps variables in a quantified expression. (Contributed by NM, 5-Sep-2004.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝑦 𝜑 ↔ [𝑦 / 𝑥]∀𝑦𝑥 𝜓)
 
Theoremrabbiia 2745 Equivalent wff's yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.)
(𝑥𝐴 → (𝜑𝜓))       {𝑥𝐴𝜑} = {𝑥𝐴𝜓}
 
Theoremrabbii 2746 Equivalent wff's correspond to equal restricted class abstractions. Inference form of rabbidv 2749. (Contributed by Peter Mazsa, 1-Nov-2019.)
(𝜑𝜓)       {𝑥𝐴𝜑} = {𝑥𝐴𝜓}
 
Theoremrabbidva2 2747* Equivalent wff's yield equal restricted class abstractions. (Contributed by Thierry Arnoux, 4-Feb-2017.)
(𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
 
Theoremrabbidva 2748* Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 28-Nov-2003.)
((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
 
Theoremrabbidv 2749* Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 10-Feb-1995.)
(𝜑 → (𝜓𝜒))       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
 
Theoremrabeqf 2750 Equality theorem for restricted class abstractions, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.)
𝑥𝐴    &   𝑥𝐵       (𝐴 = 𝐵 → {𝑥𝐴𝜑} = {𝑥𝐵𝜑})
 
Theoremrabeqif 2751 Equality theorem for restricted class abstractions. Inference form of rabeqf 2750. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝑥𝐴    &   𝑥𝐵    &   𝐴 = 𝐵       {𝑥𝐴𝜑} = {𝑥𝐵𝜑}
 
Theoremrabeq 2752* Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.)
(𝐴 = 𝐵 → {𝑥𝐴𝜑} = {𝑥𝐵𝜑})
 
Theoremrabeqi 2753* Equality theorem for restricted class abstractions. Inference form of rabeq 2752. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝐴 = 𝐵       {𝑥𝐴𝜑} = {𝑥𝐵𝜑}
 
Theoremrabeqdv 2754* Equality of restricted class abstractions. Deduction form of rabeq 2752. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝐴 = 𝐵)       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜓})
 
Theoremrabeqbidv 2755* Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.)
(𝜑𝐴 = 𝐵)    &   (𝜑 → (𝜓𝜒))       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
 
Theoremrabeqbidva 2756* Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017.)
(𝜑𝐴 = 𝐵)    &   ((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
 
Theoremrabeq2i 2757 Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.)
𝐴 = {𝑥𝐵𝜑}       (𝑥𝐴 ↔ (𝑥𝐵𝜑))
 
Theoremcbvrab 2758 Rule to change the bound variable in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 9-Oct-2016.)
𝑥𝐴    &   𝑦𝐴    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
 
Theoremcbvrabv 2759* Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.)
(𝑥 = 𝑦 → (𝜑𝜓))       {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
 
2.1.6  The universal class
 
Syntaxcvv 2760 Extend class notation to include the universal class symbol.
class V
 
Theoremvjust 2761 Soundness justification theorem for df-v 2762. (Contributed by Rodolfo Medina, 27-Apr-2010.)
{𝑥𝑥 = 𝑥} = {𝑦𝑦 = 𝑦}
 
Definitiondf-v 2762 Define the universal class. Definition 5.20 of [TakeutiZaring] p. 21. Also Definition 2.9 of [Quine] p. 19. (Contributed by NM, 5-Aug-1993.)
V = {𝑥𝑥 = 𝑥}
 
Theoremvex 2763 All setvar variables are sets (see isset 2766). Theorem 6.8 of [Quine] p. 43. (Contributed by NM, 5-Aug-1993.)
𝑥 ∈ V
 
Theoremelv 2764 Technical lemma used to shorten proofs. If a proposition is implied by 𝑥 ∈ V (which is true, see vex 2763), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.)
(𝑥 ∈ V → 𝜑)       𝜑
 
Theoremelvd 2765 Technical lemma used to shorten proofs. If a proposition is implied by 𝑥 ∈ V (which is true, see vex 2763) and another antecedent, then it is implied by the other antecedent. (Contributed by Peter Mazsa, 23-Oct-2018.)
((𝜑𝑥 ∈ V) → 𝜓)       (𝜑𝜓)
 
Theoremisset 2766* Two ways to say "𝐴 is a set": A class 𝐴 is a member of the universal class V (see df-v 2762) if and only if the class 𝐴 exists (i.e. there exists some set 𝑥 equal to class 𝐴). Theorem 6.9 of [Quine] p. 43. Notational convention: We will use the notational device "𝐴 ∈ V " to mean "𝐴 is a set" very frequently, for example in uniex 4468. Note the when 𝐴 is not a set, it is called a proper class. In some theorems, such as uniexg 4470, in order to shorten certain proofs we use the more general antecedent 𝐴𝑉 instead of 𝐴 ∈ V to mean "𝐴 is a set."

Note that a constant is implicitly considered distinct from all variables. This is why V is not included in the distinct variable list, even though df-clel 2189 requires that the expression substituted for 𝐵 not contain 𝑥. (Also, the Metamath spec does not allow constants in the distinct variable list.) (Contributed by NM, 26-May-1993.)

(𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
 
Theoremissetf 2767 A version of isset that does not require x and A to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.)
𝑥𝐴       (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
 
Theoremisseti 2768* A way to say "𝐴 is a set" (inference form). (Contributed by NM, 5-Aug-1993.)
𝐴 ∈ V       𝑥 𝑥 = 𝐴
 
Theoremissetri 2769* A way to say "𝐴 is a set" (inference form). (Contributed by NM, 5-Aug-1993.)
𝑥 𝑥 = 𝐴       𝐴 ∈ V
 
Theoremeqvisset 2770 A class equal to a variable is a set. Note the absence of disjoint variable condition, contrary to isset 2766 and issetri 2769. (Contributed by BJ, 27-Apr-2019.)
(𝑥 = 𝐴𝐴 ∈ V)
 
Theoremelex 2771 If a class is a member of another class, then it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
(𝐴𝐵𝐴 ∈ V)
 
Theoremelexi 2772 If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.)
𝐴𝐵       𝐴 ∈ V
 
Theoremelexd 2773 If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝐴𝑉)       (𝜑𝐴 ∈ V)
 
Theoremelisset 2774* An element of a class exists. (Contributed by NM, 1-May-1995.)
(𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
 
Theoremelex22 2775* If two classes each contain another class, then both contain some set. (Contributed by Alan Sare, 24-Oct-2011.)
((𝐴𝐵𝐴𝐶) → ∃𝑥(𝑥𝐵𝑥𝐶))
 
Theoremelex2 2776* If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.)
(𝐴𝐵 → ∃𝑥 𝑥𝐵)
 
Theoremralv 2777 A universal quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.)
(∀𝑥 ∈ V 𝜑 ↔ ∀𝑥𝜑)
 
Theoremrexv 2778 An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.)
(∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑)
 
Theoremreuv 2779 A unique existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010.)
(∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑)
 
Theoremrmov 2780 An at-most-one quantifier restricted to the universe is unrestricted. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
(∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥𝜑)
 
Theoremrabab 2781 A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
{𝑥 ∈ V ∣ 𝜑} = {𝑥𝜑}
 
Theoremralcom4 2782* Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
(∀𝑥𝐴𝑦𝜑 ↔ ∀𝑦𝑥𝐴 𝜑)
 
Theoremrexcom4 2783* Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
(∃𝑥𝐴𝑦𝜑 ↔ ∃𝑦𝑥𝐴 𝜑)
 
Theoremrexcom4a 2784* Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.)
(∃𝑥𝑦𝐴 (𝜑𝜓) ↔ ∃𝑦𝐴 (𝜑 ∧ ∃𝑥𝜓))
 
Theoremrexcom4b 2785* Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.)
𝐵 ∈ V       (∃𝑥𝑦𝐴 (𝜑𝑥 = 𝐵) ↔ ∃𝑦𝐴 𝜑)
 
Theoremceqsalt 2786* Closed theorem version of ceqsalg 2788. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theoremceqsralt 2787* Restricted quantifier version of ceqsalt 2786. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theoremceqsalg 2788* A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 29-Oct-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theoremceqsal 2789* A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.)
𝑥𝜓    &   𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
 
Theoremceqsalv 2790* A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.)
𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
 
Theoremceqsralv 2791* Restricted quantifier version of ceqsalv 2790. (Contributed by NM, 21-Jun-2013.)
(𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝐵 → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theoremgencl 2792* Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.)
(𝜃 ↔ ∃𝑥(𝜒𝐴 = 𝐵))    &   (𝐴 = 𝐵 → (𝜑𝜓))    &   (𝜒𝜑)       (𝜃𝜓)
 
Theorem2gencl 2793* Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.)
(𝐶𝑆 ↔ ∃𝑥𝑅 𝐴 = 𝐶)    &   (𝐷𝑆 ↔ ∃𝑦𝑅 𝐵 = 𝐷)    &   (𝐴 = 𝐶 → (𝜑𝜓))    &   (𝐵 = 𝐷 → (𝜓𝜒))    &   ((𝑥𝑅𝑦𝑅) → 𝜑)       ((𝐶𝑆𝐷𝑆) → 𝜒)
 
Theorem3gencl 2794* Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.)
(𝐷𝑆 ↔ ∃𝑥𝑅 𝐴 = 𝐷)    &   (𝐹𝑆 ↔ ∃𝑦𝑅 𝐵 = 𝐹)    &   (𝐺𝑆 ↔ ∃𝑧𝑅 𝐶 = 𝐺)    &   (𝐴 = 𝐷 → (𝜑𝜓))    &   (𝐵 = 𝐹 → (𝜓𝜒))    &   (𝐶 = 𝐺 → (𝜒𝜃))    &   ((𝑥𝑅𝑦𝑅𝑧𝑅) → 𝜑)       ((𝐷𝑆𝐹𝑆𝐺𝑆) → 𝜃)
 
Theoremcgsexg 2795* Implicit substitution inference for general classes. (Contributed by NM, 26-Aug-2007.)
(𝑥 = 𝐴𝜒)    &   (𝜒 → (𝜑𝜓))       (𝐴𝑉 → (∃𝑥(𝜒𝜑) ↔ 𝜓))
 
Theoremcgsex2g 2796* Implicit substitution inference for general classes. (Contributed by NM, 26-Jul-1995.)
((𝑥 = 𝐴𝑦 = 𝐵) → 𝜒)    &   (𝜒 → (𝜑𝜓))       ((𝐴𝑉𝐵𝑊) → (∃𝑥𝑦(𝜒𝜑) ↔ 𝜓))
 
Theoremcgsex4g 2797* An implicit substitution inference for 4 general classes. (Contributed by NM, 5-Aug-1995.)
(((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷)) → 𝜒)    &   (𝜒 → (𝜑𝜓))       (((𝐴𝑅𝐵𝑆) ∧ (𝐶𝑅𝐷𝑆)) → (∃𝑥𝑦𝑧𝑤(𝜒𝜑) ↔ 𝜓))
 
Theoremceqsex 2798* Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) (Revised by Mario Carneiro, 10-Oct-2016.)
𝑥𝜓    &   𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
 
Theoremceqsexv 2799* Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.)
𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
 
Theoremceqsex2 2800* Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.)
𝑥𝜓    &   𝑦𝜒    &   𝐴 ∈ V    &   𝐵 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))       (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ 𝜒)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15574
  Copyright terms: Public domain < Previous  Next >