| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > int0 | GIF version | ||
| Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| int0 | ⊢ ∩ ∅ = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3475 | . . . . . 6 ⊢ ¬ 𝑦 ∈ ∅ | |
| 2 | 1 | pm2.21i 649 | . . . . 5 ⊢ (𝑦 ∈ ∅ → 𝑥 ∈ 𝑦) |
| 3 | 2 | ax-gen 1475 | . . . 4 ⊢ ∀𝑦(𝑦 ∈ ∅ → 𝑥 ∈ 𝑦) |
| 4 | equid 1727 | . . . 4 ⊢ 𝑥 = 𝑥 | |
| 5 | 3, 4 | 2th 174 | . . 3 ⊢ (∀𝑦(𝑦 ∈ ∅ → 𝑥 ∈ 𝑦) ↔ 𝑥 = 𝑥) |
| 6 | 5 | abbii 2325 | . 2 ⊢ {𝑥 ∣ ∀𝑦(𝑦 ∈ ∅ → 𝑥 ∈ 𝑦)} = {𝑥 ∣ 𝑥 = 𝑥} |
| 7 | df-int 3903 | . 2 ⊢ ∩ ∅ = {𝑥 ∣ ∀𝑦(𝑦 ∈ ∅ → 𝑥 ∈ 𝑦)} | |
| 8 | df-v 2781 | . 2 ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | |
| 9 | 6, 7, 8 | 3eqtr4i 2240 | 1 ⊢ ∩ ∅ = V |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1373 = wceq 1375 ∈ wcel 2180 {cab 2195 Vcvv 2779 ∅c0 3471 ∩ cint 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-dif 3179 df-nul 3472 df-int 3903 |
| This theorem is referenced by: rint0 3941 intexr 4213 fiintim 7061 elfi2 7107 fi0 7110 bj-intexr 16181 |
| Copyright terms: Public domain | W3C validator |