ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  int0 GIF version

Theorem int0 3838
Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
int0 ∅ = V

Proof of Theorem int0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 3413 . . . . . 6 ¬ 𝑦 ∈ ∅
21pm2.21i 636 . . . . 5 (𝑦 ∈ ∅ → 𝑥𝑦)
32ax-gen 1437 . . . 4 𝑦(𝑦 ∈ ∅ → 𝑥𝑦)
4 equid 1689 . . . 4 𝑥 = 𝑥
53, 42th 173 . . 3 (∀𝑦(𝑦 ∈ ∅ → 𝑥𝑦) ↔ 𝑥 = 𝑥)
65abbii 2282 . 2 {𝑥 ∣ ∀𝑦(𝑦 ∈ ∅ → 𝑥𝑦)} = {𝑥𝑥 = 𝑥}
7 df-int 3825 . 2 ∅ = {𝑥 ∣ ∀𝑦(𝑦 ∈ ∅ → 𝑥𝑦)}
8 df-v 2728 . 2 V = {𝑥𝑥 = 𝑥}
96, 7, 83eqtr4i 2196 1 ∅ = V
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341   = wceq 1343  wcel 2136  {cab 2151  Vcvv 2726  c0 3409   cint 3824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-nul 3410  df-int 3825
This theorem is referenced by:  rint0  3863  intexr  4129  fiintim  6894  elfi2  6937  fi0  6940  bj-intexr  13790
  Copyright terms: Public domain W3C validator