Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > int0 | GIF version |
Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
int0 | ⊢ ∩ ∅ = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3413 | . . . . . 6 ⊢ ¬ 𝑦 ∈ ∅ | |
2 | 1 | pm2.21i 636 | . . . . 5 ⊢ (𝑦 ∈ ∅ → 𝑥 ∈ 𝑦) |
3 | 2 | ax-gen 1437 | . . . 4 ⊢ ∀𝑦(𝑦 ∈ ∅ → 𝑥 ∈ 𝑦) |
4 | equid 1689 | . . . 4 ⊢ 𝑥 = 𝑥 | |
5 | 3, 4 | 2th 173 | . . 3 ⊢ (∀𝑦(𝑦 ∈ ∅ → 𝑥 ∈ 𝑦) ↔ 𝑥 = 𝑥) |
6 | 5 | abbii 2282 | . 2 ⊢ {𝑥 ∣ ∀𝑦(𝑦 ∈ ∅ → 𝑥 ∈ 𝑦)} = {𝑥 ∣ 𝑥 = 𝑥} |
7 | df-int 3825 | . 2 ⊢ ∩ ∅ = {𝑥 ∣ ∀𝑦(𝑦 ∈ ∅ → 𝑥 ∈ 𝑦)} | |
8 | df-v 2728 | . 2 ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | |
9 | 6, 7, 8 | 3eqtr4i 2196 | 1 ⊢ ∩ ∅ = V |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 = wceq 1343 ∈ wcel 2136 {cab 2151 Vcvv 2726 ∅c0 3409 ∩ cint 3824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-nul 3410 df-int 3825 |
This theorem is referenced by: rint0 3863 intexr 4129 fiintim 6894 elfi2 6937 fi0 6940 bj-intexr 13790 |
Copyright terms: Public domain | W3C validator |