ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  int0 GIF version

Theorem int0 3854
Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
int0 ∅ = V

Proof of Theorem int0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 3424 . . . . . 6 ¬ 𝑦 ∈ ∅
21pm2.21i 646 . . . . 5 (𝑦 ∈ ∅ → 𝑥𝑦)
32ax-gen 1447 . . . 4 𝑦(𝑦 ∈ ∅ → 𝑥𝑦)
4 equid 1699 . . . 4 𝑥 = 𝑥
53, 42th 174 . . 3 (∀𝑦(𝑦 ∈ ∅ → 𝑥𝑦) ↔ 𝑥 = 𝑥)
65abbii 2291 . 2 {𝑥 ∣ ∀𝑦(𝑦 ∈ ∅ → 𝑥𝑦)} = {𝑥𝑥 = 𝑥}
7 df-int 3841 . 2 ∅ = {𝑥 ∣ ∀𝑦(𝑦 ∈ ∅ → 𝑥𝑦)}
8 df-v 2737 . 2 V = {𝑥𝑥 = 𝑥}
96, 7, 83eqtr4i 2206 1 ∅ = V
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1351   = wceq 1353  wcel 2146  {cab 2161  Vcvv 2735  c0 3420   cint 3840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-dif 3129  df-nul 3421  df-int 3841
This theorem is referenced by:  rint0  3879  intexr  4145  fiintim  6918  elfi2  6961  fi0  6964  bj-intexr  14218
  Copyright terms: Public domain W3C validator