ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  int0 GIF version

Theorem int0 3860
Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
int0 ∅ = V

Proof of Theorem int0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 3428 . . . . . 6 ¬ 𝑦 ∈ ∅
21pm2.21i 646 . . . . 5 (𝑦 ∈ ∅ → 𝑥𝑦)
32ax-gen 1449 . . . 4 𝑦(𝑦 ∈ ∅ → 𝑥𝑦)
4 equid 1701 . . . 4 𝑥 = 𝑥
53, 42th 174 . . 3 (∀𝑦(𝑦 ∈ ∅ → 𝑥𝑦) ↔ 𝑥 = 𝑥)
65abbii 2293 . 2 {𝑥 ∣ ∀𝑦(𝑦 ∈ ∅ → 𝑥𝑦)} = {𝑥𝑥 = 𝑥}
7 df-int 3847 . 2 ∅ = {𝑥 ∣ ∀𝑦(𝑦 ∈ ∅ → 𝑥𝑦)}
8 df-v 2741 . 2 V = {𝑥𝑥 = 𝑥}
96, 7, 83eqtr4i 2208 1 ∅ = V
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1351   = wceq 1353  wcel 2148  {cab 2163  Vcvv 2739  c0 3424   cint 3846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-nul 3425  df-int 3847
This theorem is referenced by:  rint0  3885  intexr  4152  fiintim  6930  elfi2  6973  fi0  6976  bj-intexr  14745
  Copyright terms: Public domain W3C validator