Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > int0 | GIF version |
Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
int0 | ⊢ ∩ ∅ = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3418 | . . . . . 6 ⊢ ¬ 𝑦 ∈ ∅ | |
2 | 1 | pm2.21i 641 | . . . . 5 ⊢ (𝑦 ∈ ∅ → 𝑥 ∈ 𝑦) |
3 | 2 | ax-gen 1442 | . . . 4 ⊢ ∀𝑦(𝑦 ∈ ∅ → 𝑥 ∈ 𝑦) |
4 | equid 1694 | . . . 4 ⊢ 𝑥 = 𝑥 | |
5 | 3, 4 | 2th 173 | . . 3 ⊢ (∀𝑦(𝑦 ∈ ∅ → 𝑥 ∈ 𝑦) ↔ 𝑥 = 𝑥) |
6 | 5 | abbii 2286 | . 2 ⊢ {𝑥 ∣ ∀𝑦(𝑦 ∈ ∅ → 𝑥 ∈ 𝑦)} = {𝑥 ∣ 𝑥 = 𝑥} |
7 | df-int 3832 | . 2 ⊢ ∩ ∅ = {𝑥 ∣ ∀𝑦(𝑦 ∈ ∅ → 𝑥 ∈ 𝑦)} | |
8 | df-v 2732 | . 2 ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | |
9 | 6, 7, 8 | 3eqtr4i 2201 | 1 ⊢ ∩ ∅ = V |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 = wceq 1348 ∈ wcel 2141 {cab 2156 Vcvv 2730 ∅c0 3414 ∩ cint 3831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-nul 3415 df-int 3832 |
This theorem is referenced by: rint0 3870 intexr 4136 fiintim 6906 elfi2 6949 fi0 6952 bj-intexr 13943 |
Copyright terms: Public domain | W3C validator |