ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  int0 GIF version

Theorem int0 3888
Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
int0 ∅ = V

Proof of Theorem int0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 3454 . . . . . 6 ¬ 𝑦 ∈ ∅
21pm2.21i 647 . . . . 5 (𝑦 ∈ ∅ → 𝑥𝑦)
32ax-gen 1463 . . . 4 𝑦(𝑦 ∈ ∅ → 𝑥𝑦)
4 equid 1715 . . . 4 𝑥 = 𝑥
53, 42th 174 . . 3 (∀𝑦(𝑦 ∈ ∅ → 𝑥𝑦) ↔ 𝑥 = 𝑥)
65abbii 2312 . 2 {𝑥 ∣ ∀𝑦(𝑦 ∈ ∅ → 𝑥𝑦)} = {𝑥𝑥 = 𝑥}
7 df-int 3875 . 2 ∅ = {𝑥 ∣ ∀𝑦(𝑦 ∈ ∅ → 𝑥𝑦)}
8 df-v 2765 . 2 V = {𝑥𝑥 = 𝑥}
96, 7, 83eqtr4i 2227 1 ∅ = V
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362   = wceq 1364  wcel 2167  {cab 2182  Vcvv 2763  c0 3450   cint 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-nul 3451  df-int 3875
This theorem is referenced by:  rint0  3913  intexr  4183  fiintim  6992  elfi2  7038  fi0  7041  bj-intexr  15554
  Copyright terms: Public domain W3C validator