ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  int0 GIF version

Theorem int0 3937
Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
int0 ∅ = V

Proof of Theorem int0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 3495 . . . . . 6 ¬ 𝑦 ∈ ∅
21pm2.21i 649 . . . . 5 (𝑦 ∈ ∅ → 𝑥𝑦)
32ax-gen 1495 . . . 4 𝑦(𝑦 ∈ ∅ → 𝑥𝑦)
4 equid 1747 . . . 4 𝑥 = 𝑥
53, 42th 174 . . 3 (∀𝑦(𝑦 ∈ ∅ → 𝑥𝑦) ↔ 𝑥 = 𝑥)
65abbii 2345 . 2 {𝑥 ∣ ∀𝑦(𝑦 ∈ ∅ → 𝑥𝑦)} = {𝑥𝑥 = 𝑥}
7 df-int 3924 . 2 ∅ = {𝑥 ∣ ∀𝑦(𝑦 ∈ ∅ → 𝑥𝑦)}
8 df-v 2801 . 2 V = {𝑥𝑥 = 𝑥}
96, 7, 83eqtr4i 2260 1 ∅ = V
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1393   = wceq 1395  wcel 2200  {cab 2215  Vcvv 2799  c0 3491   cint 3923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-nul 3492  df-int 3924
This theorem is referenced by:  rint0  3962  intexr  4234  fiintim  7101  elfi2  7147  fi0  7150  bj-intexr  16295
  Copyright terms: Public domain W3C validator