Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > int0 | GIF version |
Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
int0 | ⊢ ∩ ∅ = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3424 | . . . . . 6 ⊢ ¬ 𝑦 ∈ ∅ | |
2 | 1 | pm2.21i 646 | . . . . 5 ⊢ (𝑦 ∈ ∅ → 𝑥 ∈ 𝑦) |
3 | 2 | ax-gen 1447 | . . . 4 ⊢ ∀𝑦(𝑦 ∈ ∅ → 𝑥 ∈ 𝑦) |
4 | equid 1699 | . . . 4 ⊢ 𝑥 = 𝑥 | |
5 | 3, 4 | 2th 174 | . . 3 ⊢ (∀𝑦(𝑦 ∈ ∅ → 𝑥 ∈ 𝑦) ↔ 𝑥 = 𝑥) |
6 | 5 | abbii 2291 | . 2 ⊢ {𝑥 ∣ ∀𝑦(𝑦 ∈ ∅ → 𝑥 ∈ 𝑦)} = {𝑥 ∣ 𝑥 = 𝑥} |
7 | df-int 3841 | . 2 ⊢ ∩ ∅ = {𝑥 ∣ ∀𝑦(𝑦 ∈ ∅ → 𝑥 ∈ 𝑦)} | |
8 | df-v 2737 | . 2 ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | |
9 | 6, 7, 8 | 3eqtr4i 2206 | 1 ⊢ ∩ ∅ = V |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1351 = wceq 1353 ∈ wcel 2146 {cab 2161 Vcvv 2735 ∅c0 3420 ∩ cint 3840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-dif 3129 df-nul 3421 df-int 3841 |
This theorem is referenced by: rint0 3879 intexr 4145 fiintim 6918 elfi2 6961 fi0 6964 bj-intexr 14218 |
Copyright terms: Public domain | W3C validator |