ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  int0 GIF version

Theorem int0 3916
Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
int0 ∅ = V

Proof of Theorem int0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 3475 . . . . . 6 ¬ 𝑦 ∈ ∅
21pm2.21i 649 . . . . 5 (𝑦 ∈ ∅ → 𝑥𝑦)
32ax-gen 1475 . . . 4 𝑦(𝑦 ∈ ∅ → 𝑥𝑦)
4 equid 1727 . . . 4 𝑥 = 𝑥
53, 42th 174 . . 3 (∀𝑦(𝑦 ∈ ∅ → 𝑥𝑦) ↔ 𝑥 = 𝑥)
65abbii 2325 . 2 {𝑥 ∣ ∀𝑦(𝑦 ∈ ∅ → 𝑥𝑦)} = {𝑥𝑥 = 𝑥}
7 df-int 3903 . 2 ∅ = {𝑥 ∣ ∀𝑦(𝑦 ∈ ∅ → 𝑥𝑦)}
8 df-v 2781 . 2 V = {𝑥𝑥 = 𝑥}
96, 7, 83eqtr4i 2240 1 ∅ = V
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1373   = wceq 1375  wcel 2180  {cab 2195  Vcvv 2779  c0 3471   cint 3902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-dif 3179  df-nul 3472  df-int 3903
This theorem is referenced by:  rint0  3941  intexr  4213  fiintim  7061  elfi2  7107  fi0  7110  bj-intexr  16181
  Copyright terms: Public domain W3C validator