ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  int0 GIF version

Theorem int0 3845
Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
int0 ∅ = V

Proof of Theorem int0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 3418 . . . . . 6 ¬ 𝑦 ∈ ∅
21pm2.21i 641 . . . . 5 (𝑦 ∈ ∅ → 𝑥𝑦)
32ax-gen 1442 . . . 4 𝑦(𝑦 ∈ ∅ → 𝑥𝑦)
4 equid 1694 . . . 4 𝑥 = 𝑥
53, 42th 173 . . 3 (∀𝑦(𝑦 ∈ ∅ → 𝑥𝑦) ↔ 𝑥 = 𝑥)
65abbii 2286 . 2 {𝑥 ∣ ∀𝑦(𝑦 ∈ ∅ → 𝑥𝑦)} = {𝑥𝑥 = 𝑥}
7 df-int 3832 . 2 ∅ = {𝑥 ∣ ∀𝑦(𝑦 ∈ ∅ → 𝑥𝑦)}
8 df-v 2732 . 2 V = {𝑥𝑥 = 𝑥}
96, 7, 83eqtr4i 2201 1 ∅ = V
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1346   = wceq 1348  wcel 2141  {cab 2156  Vcvv 2730  c0 3414   cint 3831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-nul 3415  df-int 3832
This theorem is referenced by:  rint0  3870  intexr  4136  fiintim  6906  elfi2  6949  fi0  6952  bj-intexr  13943
  Copyright terms: Public domain W3C validator