| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > int0 | GIF version | ||
| Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| int0 | ⊢ ∩ ∅ = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3454 | . . . . . 6 ⊢ ¬ 𝑦 ∈ ∅ | |
| 2 | 1 | pm2.21i 647 | . . . . 5 ⊢ (𝑦 ∈ ∅ → 𝑥 ∈ 𝑦) |
| 3 | 2 | ax-gen 1463 | . . . 4 ⊢ ∀𝑦(𝑦 ∈ ∅ → 𝑥 ∈ 𝑦) |
| 4 | equid 1715 | . . . 4 ⊢ 𝑥 = 𝑥 | |
| 5 | 3, 4 | 2th 174 | . . 3 ⊢ (∀𝑦(𝑦 ∈ ∅ → 𝑥 ∈ 𝑦) ↔ 𝑥 = 𝑥) |
| 6 | 5 | abbii 2312 | . 2 ⊢ {𝑥 ∣ ∀𝑦(𝑦 ∈ ∅ → 𝑥 ∈ 𝑦)} = {𝑥 ∣ 𝑥 = 𝑥} |
| 7 | df-int 3875 | . 2 ⊢ ∩ ∅ = {𝑥 ∣ ∀𝑦(𝑦 ∈ ∅ → 𝑥 ∈ 𝑦)} | |
| 8 | df-v 2765 | . 2 ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | |
| 9 | 6, 7, 8 | 3eqtr4i 2227 | 1 ⊢ ∩ ∅ = V |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 = wceq 1364 ∈ wcel 2167 {cab 2182 Vcvv 2763 ∅c0 3450 ∩ cint 3874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-nul 3451 df-int 3875 |
| This theorem is referenced by: rint0 3913 intexr 4183 fiintim 6992 elfi2 7038 fi0 7041 bj-intexr 15554 |
| Copyright terms: Public domain | W3C validator |