![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dcextest | GIF version |
Description: If it is decidable whether {𝑥 ∣ 𝜑} is a set, then ¬ 𝜑 is decidable (where 𝑥 does not occur in 𝜑). From this fact, we can deduce (outside the formal system, since we cannot quantify over classes) that if it is decidable whether any class is a set, then "weak excluded middle" (that is, any negated proposition ¬ 𝜑 is decidable) holds. (Contributed by Jim Kingdon, 3-Jul-2022.) |
Ref | Expression |
---|---|
dcextest.ex | ⊢ DECID {𝑥 ∣ 𝜑} ∈ V |
Ref | Expression |
---|---|
dcextest | ⊢ DECID ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcextest.ex | . . . 4 ⊢ DECID {𝑥 ∣ 𝜑} ∈ V | |
2 | exmiddc 837 | . . . 4 ⊢ (DECID {𝑥 ∣ 𝜑} ∈ V → ({𝑥 ∣ 𝜑} ∈ V ∨ ¬ {𝑥 ∣ 𝜑} ∈ V)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ({𝑥 ∣ 𝜑} ∈ V ∨ ¬ {𝑥 ∣ 𝜑} ∈ V) |
4 | vprc 4147 | . . . . . . 7 ⊢ ¬ V ∈ V | |
5 | df-v 2751 | . . . . . . . . 9 ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | |
6 | equid 1711 | . . . . . . . . . . 11 ⊢ 𝑥 = 𝑥 | |
7 | pm5.1im 173 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑥 → (𝜑 → (𝑥 = 𝑥 ↔ 𝜑))) | |
8 | 6, 7 | ax-mp 5 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑥 = 𝑥 ↔ 𝜑)) |
9 | 8 | abbidv 2305 | . . . . . . . . 9 ⊢ (𝜑 → {𝑥 ∣ 𝑥 = 𝑥} = {𝑥 ∣ 𝜑}) |
10 | 5, 9 | eqtr2id 2233 | . . . . . . . 8 ⊢ (𝜑 → {𝑥 ∣ 𝜑} = V) |
11 | 10 | eleq1d 2256 | . . . . . . 7 ⊢ (𝜑 → ({𝑥 ∣ 𝜑} ∈ V ↔ V ∈ V)) |
12 | 4, 11 | mtbiri 676 | . . . . . 6 ⊢ (𝜑 → ¬ {𝑥 ∣ 𝜑} ∈ V) |
13 | 12 | con2i 628 | . . . . 5 ⊢ ({𝑥 ∣ 𝜑} ∈ V → ¬ 𝜑) |
14 | vex 2752 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
15 | biidd 172 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜑)) | |
16 | 14, 15 | elab 2893 | . . . . . . . . 9 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
17 | 16 | notbii 669 | . . . . . . . 8 ⊢ (¬ 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ¬ 𝜑) |
18 | 17 | biimpri 133 | . . . . . . 7 ⊢ (¬ 𝜑 → ¬ 𝑦 ∈ {𝑥 ∣ 𝜑}) |
19 | 18 | eq0rdv 3479 | . . . . . 6 ⊢ (¬ 𝜑 → {𝑥 ∣ 𝜑} = ∅) |
20 | 0ex 4142 | . . . . . 6 ⊢ ∅ ∈ V | |
21 | 19, 20 | eqeltrdi 2278 | . . . . 5 ⊢ (¬ 𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
22 | 13, 21 | impbii 126 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} ∈ V ↔ ¬ 𝜑) |
23 | 22 | notbii 669 | . . . 4 ⊢ (¬ {𝑥 ∣ 𝜑} ∈ V ↔ ¬ ¬ 𝜑) |
24 | 22, 23 | orbi12i 765 | . . 3 ⊢ (({𝑥 ∣ 𝜑} ∈ V ∨ ¬ {𝑥 ∣ 𝜑} ∈ V) ↔ (¬ 𝜑 ∨ ¬ ¬ 𝜑)) |
25 | 3, 24 | mpbi 145 | . 2 ⊢ (¬ 𝜑 ∨ ¬ ¬ 𝜑) |
26 | df-dc 836 | . 2 ⊢ (DECID ¬ 𝜑 ↔ (¬ 𝜑 ∨ ¬ ¬ 𝜑)) | |
27 | 25, 26 | mpbir 146 | 1 ⊢ DECID ¬ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 709 DECID wdc 835 ∈ wcel 2158 {cab 2173 Vcvv 2749 ∅c0 3434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-nul 4141 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-v 2751 df-dif 3143 df-in 3147 df-ss 3154 df-nul 3435 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |