| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcextest | GIF version | ||
| Description: If it is decidable whether {𝑥 ∣ 𝜑} is a set, then ¬ 𝜑 is decidable (where 𝑥 does not occur in 𝜑). From this fact, we can deduce (outside the formal system, since we cannot quantify over classes) that if it is decidable whether any class is a set, then "weak excluded middle" (that is, any negated proposition ¬ 𝜑 is decidable) holds. (Contributed by Jim Kingdon, 3-Jul-2022.) |
| Ref | Expression |
|---|---|
| dcextest.ex | ⊢ DECID {𝑥 ∣ 𝜑} ∈ V |
| Ref | Expression |
|---|---|
| dcextest | ⊢ DECID ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dcextest.ex | . . . 4 ⊢ DECID {𝑥 ∣ 𝜑} ∈ V | |
| 2 | exmiddc 837 | . . . 4 ⊢ (DECID {𝑥 ∣ 𝜑} ∈ V → ({𝑥 ∣ 𝜑} ∈ V ∨ ¬ {𝑥 ∣ 𝜑} ∈ V)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ({𝑥 ∣ 𝜑} ∈ V ∨ ¬ {𝑥 ∣ 𝜑} ∈ V) |
| 4 | vprc 4165 | . . . . . . 7 ⊢ ¬ V ∈ V | |
| 5 | df-v 2765 | . . . . . . . . 9 ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | |
| 6 | equid 1715 | . . . . . . . . . . 11 ⊢ 𝑥 = 𝑥 | |
| 7 | pm5.1im 173 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑥 → (𝜑 → (𝑥 = 𝑥 ↔ 𝜑))) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑥 = 𝑥 ↔ 𝜑)) |
| 9 | 8 | abbidv 2314 | . . . . . . . . 9 ⊢ (𝜑 → {𝑥 ∣ 𝑥 = 𝑥} = {𝑥 ∣ 𝜑}) |
| 10 | 5, 9 | eqtr2id 2242 | . . . . . . . 8 ⊢ (𝜑 → {𝑥 ∣ 𝜑} = V) |
| 11 | 10 | eleq1d 2265 | . . . . . . 7 ⊢ (𝜑 → ({𝑥 ∣ 𝜑} ∈ V ↔ V ∈ V)) |
| 12 | 4, 11 | mtbiri 676 | . . . . . 6 ⊢ (𝜑 → ¬ {𝑥 ∣ 𝜑} ∈ V) |
| 13 | 12 | con2i 628 | . . . . 5 ⊢ ({𝑥 ∣ 𝜑} ∈ V → ¬ 𝜑) |
| 14 | vex 2766 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
| 15 | biidd 172 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜑)) | |
| 16 | 14, 15 | elab 2908 | . . . . . . . . 9 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
| 17 | 16 | notbii 669 | . . . . . . . 8 ⊢ (¬ 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ¬ 𝜑) |
| 18 | 17 | biimpri 133 | . . . . . . 7 ⊢ (¬ 𝜑 → ¬ 𝑦 ∈ {𝑥 ∣ 𝜑}) |
| 19 | 18 | eq0rdv 3495 | . . . . . 6 ⊢ (¬ 𝜑 → {𝑥 ∣ 𝜑} = ∅) |
| 20 | 0ex 4160 | . . . . . 6 ⊢ ∅ ∈ V | |
| 21 | 19, 20 | eqeltrdi 2287 | . . . . 5 ⊢ (¬ 𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
| 22 | 13, 21 | impbii 126 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} ∈ V ↔ ¬ 𝜑) |
| 23 | 22 | notbii 669 | . . . 4 ⊢ (¬ {𝑥 ∣ 𝜑} ∈ V ↔ ¬ ¬ 𝜑) |
| 24 | 22, 23 | orbi12i 765 | . . 3 ⊢ (({𝑥 ∣ 𝜑} ∈ V ∨ ¬ {𝑥 ∣ 𝜑} ∈ V) ↔ (¬ 𝜑 ∨ ¬ ¬ 𝜑)) |
| 25 | 3, 24 | mpbi 145 | . 2 ⊢ (¬ 𝜑 ∨ ¬ ¬ 𝜑) |
| 26 | df-dc 836 | . 2 ⊢ (DECID ¬ 𝜑 ↔ (¬ 𝜑 ∨ ¬ ¬ 𝜑)) | |
| 27 | 25, 26 | mpbir 146 | 1 ⊢ DECID ¬ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 709 DECID wdc 835 ∈ wcel 2167 {cab 2182 Vcvv 2763 ∅c0 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3451 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |