Step | Hyp | Ref
| Expression |
1 | | xpsval.t |
. 2
β’ π = (π
Γs π) |
2 | | xpsval.1 |
. . . 4
β’ (π β π
β π) |
3 | 2 | elexd 2751 |
. . 3
β’ (π β π
β V) |
4 | | xpsval.2 |
. . . 4
β’ (π β π β π) |
5 | 4 | elexd 2751 |
. . 3
β’ (π β π β V) |
6 | | xpsval.x |
. . . . . . 7
β’ π = (Baseβπ
) |
7 | | basfn 12520 |
. . . . . . . 8
β’ Base Fn
V |
8 | | funfvex 5533 |
. . . . . . . . 9
β’ ((Fun
Base β§ π
β dom
Base) β (Baseβπ
)
β V) |
9 | 8 | funfni 5317 |
. . . . . . . 8
β’ ((Base Fn
V β§ π
β V) β
(Baseβπ
) β
V) |
10 | 7, 3, 9 | sylancr 414 |
. . . . . . 7
β’ (π β (Baseβπ
) β V) |
11 | 6, 10 | eqeltrid 2264 |
. . . . . 6
β’ (π β π β V) |
12 | | xpsval.y |
. . . . . . 7
β’ π = (Baseβπ) |
13 | | funfvex 5533 |
. . . . . . . . 9
β’ ((Fun
Base β§ π β dom
Base) β (Baseβπ)
β V) |
14 | 13 | funfni 5317 |
. . . . . . . 8
β’ ((Base Fn
V β§ π β V) β
(Baseβπ) β
V) |
15 | 7, 5, 14 | sylancr 414 |
. . . . . . 7
β’ (π β (Baseβπ) β V) |
16 | 12, 15 | eqeltrid 2264 |
. . . . . 6
β’ (π β π β V) |
17 | | xpsval.f |
. . . . . . 7
β’ πΉ = (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) |
18 | 17 | mpoexg 6212 |
. . . . . 6
β’ ((π β V β§ π β V) β πΉ β V) |
19 | 11, 16, 18 | syl2anc 411 |
. . . . 5
β’ (π β πΉ β V) |
20 | | cnvexg 5167 |
. . . . 5
β’ (πΉ β V β β‘πΉ β V) |
21 | 19, 20 | syl 14 |
. . . 4
β’ (π β β‘πΉ β V) |
22 | | xpsval.u |
. . . . 5
β’ π = (πΊXs{β¨β
, π
β©, β¨1o, πβ©}) |
23 | | xpsval.k |
. . . . . . 7
β’ πΊ = (Scalarβπ
) |
24 | | scaslid 12611 |
. . . . . . . . 9
β’ (Scalar =
Slot (Scalarβndx) β§ (Scalarβndx) β
β) |
25 | 24 | slotex 12489 |
. . . . . . . 8
β’ (π
β π β (Scalarβπ
) β V) |
26 | 2, 25 | syl 14 |
. . . . . . 7
β’ (π β (Scalarβπ
) β V) |
27 | 23, 26 | eqeltrid 2264 |
. . . . . 6
β’ (π β πΊ β V) |
28 | | 0lt2o 6442 |
. . . . . . . 8
β’ β
β 2o |
29 | | opexg 4229 |
. . . . . . . 8
β’ ((β
β 2o β§ π
β π) β β¨β
, π
β© β V) |
30 | 28, 2, 29 | sylancr 414 |
. . . . . . 7
β’ (π β β¨β
, π
β© β
V) |
31 | | 1lt2o 6443 |
. . . . . . . 8
β’
1o β 2o |
32 | | opexg 4229 |
. . . . . . . 8
β’
((1o β 2o β§ π β π) β β¨1o, πβ© β
V) |
33 | 31, 4, 32 | sylancr 414 |
. . . . . . 7
β’ (π β β¨1o, πβ© β
V) |
34 | | prexg 4212 |
. . . . . . 7
β’
((β¨β
, π
β© β V β§ β¨1o,
πβ© β V) β
{β¨β
, π
β©,
β¨1o, πβ©} β V) |
35 | 30, 33, 34 | syl2anc 411 |
. . . . . 6
β’ (π β {β¨β
, π
β©, β¨1o,
πβ©} β
V) |
36 | | prdsex 12718 |
. . . . . 6
β’ ((πΊ β V β§ {β¨β
,
π
β©,
β¨1o, πβ©} β V) β (πΊXs{β¨β
, π
β©, β¨1o, πβ©}) β
V) |
37 | 27, 35, 36 | syl2anc 411 |
. . . . 5
β’ (π β (πΊXs{β¨β
, π
β©, β¨1o, πβ©}) β
V) |
38 | 22, 37 | eqeltrid 2264 |
. . . 4
β’ (π β π β V) |
39 | | imasex 12726 |
. . . 4
β’ ((β‘πΉ β V β§ π β V) β (β‘πΉ βs π) β V) |
40 | 21, 38, 39 | syl2anc 411 |
. . 3
β’ (π β (β‘πΉ βs π) β V) |
41 | | fveq2 5516 |
. . . . . . . . 9
β’ (π = π
β (Baseβπ) = (Baseβπ
)) |
42 | 41, 6 | eqtr4di 2228 |
. . . . . . . 8
β’ (π = π
β (Baseβπ) = π) |
43 | | fveq2 5516 |
. . . . . . . . 9
β’ (π = π β (Baseβπ ) = (Baseβπ)) |
44 | 43, 12 | eqtr4di 2228 |
. . . . . . . 8
β’ (π = π β (Baseβπ ) = π) |
45 | | mpoeq12 5935 |
. . . . . . . 8
β’
(((Baseβπ) =
π β§ (Baseβπ ) = π) β (π₯ β (Baseβπ), π¦ β (Baseβπ ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) = (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©})) |
46 | 42, 44, 45 | syl2an 289 |
. . . . . . 7
β’ ((π = π
β§ π = π) β (π₯ β (Baseβπ), π¦ β (Baseβπ ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) = (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©})) |
47 | 46, 17 | eqtr4di 2228 |
. . . . . 6
β’ ((π = π
β§ π = π) β (π₯ β (Baseβπ), π¦ β (Baseβπ ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) = πΉ) |
48 | 47 | cnveqd 4804 |
. . . . 5
β’ ((π = π
β§ π = π) β β‘(π₯ β (Baseβπ), π¦ β (Baseβπ ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) = β‘πΉ) |
49 | | fveq2 5516 |
. . . . . . . . 9
β’ (π = π
β (Scalarβπ) = (Scalarβπ
)) |
50 | 49 | adantr 276 |
. . . . . . . 8
β’ ((π = π
β§ π = π) β (Scalarβπ) = (Scalarβπ
)) |
51 | 50, 23 | eqtr4di 2228 |
. . . . . . 7
β’ ((π = π
β§ π = π) β (Scalarβπ) = πΊ) |
52 | | simpl 109 |
. . . . . . . . 9
β’ ((π = π
β§ π = π) β π = π
) |
53 | 52 | opeq2d 3786 |
. . . . . . . 8
β’ ((π = π
β§ π = π) β β¨β
, πβ© = β¨β
, π
β©) |
54 | | simpr 110 |
. . . . . . . . 9
β’ ((π = π
β§ π = π) β π = π) |
55 | 54 | opeq2d 3786 |
. . . . . . . 8
β’ ((π = π
β§ π = π) β β¨1o, π β© = β¨1o,
πβ©) |
56 | 53, 55 | preq12d 3678 |
. . . . . . 7
β’ ((π = π
β§ π = π) β {β¨β
, πβ©, β¨1o, π β©} = {β¨β
, π
β©, β¨1o,
πβ©}) |
57 | 51, 56 | oveq12d 5893 |
. . . . . 6
β’ ((π = π
β§ π = π) β ((Scalarβπ)Xs{β¨β
, πβ©, β¨1o, π β©}) = (πΊXs{β¨β
, π
β©, β¨1o, πβ©})) |
58 | 57, 22 | eqtr4di 2228 |
. . . . 5
β’ ((π = π
β§ π = π) β ((Scalarβπ)Xs{β¨β
, πβ©, β¨1o, π β©}) = π) |
59 | 48, 58 | oveq12d 5893 |
. . . 4
β’ ((π = π
β§ π = π) β (β‘(π₯ β (Baseβπ), π¦ β (Baseβπ ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©})
βs ((Scalarβπ)Xs{β¨β
, πβ©, β¨1o, π β©})) = (β‘πΉ βs π)) |
60 | | df-xps 12725 |
. . . 4
β’
Γs = (π β V, π β V β¦ (β‘(π₯ β (Baseβπ), π¦ β (Baseβπ ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©})
βs ((Scalarβπ)Xs{β¨β
, πβ©, β¨1o, π β©}))) |
61 | 59, 60 | ovmpoga 6004 |
. . 3
β’ ((π
β V β§ π β V β§ (β‘πΉ βs π) β V) β (π
Γs
π) = (β‘πΉ βs π)) |
62 | 3, 5, 40, 61 | syl3anc 1238 |
. 2
β’ (π β (π
Γs π) = (β‘πΉ βs π)) |
63 | 1, 62 | eqtrid 2222 |
1
β’ (π β π = (β‘πΉ βs π)) |