| Step | Hyp | Ref
 | Expression | 
| 1 |   | xpsval.t | 
. 2
⊢ 𝑇 = (𝑅 ×s 𝑆) | 
| 2 |   | xpsval.1 | 
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝑉) | 
| 3 | 2 | elexd 2776 | 
. . 3
⊢ (𝜑 → 𝑅 ∈ V) | 
| 4 |   | xpsval.2 | 
. . . 4
⊢ (𝜑 → 𝑆 ∈ 𝑊) | 
| 5 | 4 | elexd 2776 | 
. . 3
⊢ (𝜑 → 𝑆 ∈ V) | 
| 6 |   | xpsval.x | 
. . . . . . 7
⊢ 𝑋 = (Base‘𝑅) | 
| 7 |   | basfn 12736 | 
. . . . . . . 8
⊢ Base Fn
V | 
| 8 |   | funfvex 5575 | 
. . . . . . . . 9
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) | 
| 9 | 8 | funfni 5358 | 
. . . . . . . 8
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) | 
| 10 | 7, 3, 9 | sylancr 414 | 
. . . . . . 7
⊢ (𝜑 → (Base‘𝑅) ∈ V) | 
| 11 | 6, 10 | eqeltrid 2283 | 
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ V) | 
| 12 |   | xpsval.y | 
. . . . . . 7
⊢ 𝑌 = (Base‘𝑆) | 
| 13 |   | funfvex 5575 | 
. . . . . . . . 9
⊢ ((Fun
Base ∧ 𝑆 ∈ dom
Base) → (Base‘𝑆)
∈ V) | 
| 14 | 13 | funfni 5358 | 
. . . . . . . 8
⊢ ((Base Fn
V ∧ 𝑆 ∈ V) →
(Base‘𝑆) ∈
V) | 
| 15 | 7, 5, 14 | sylancr 414 | 
. . . . . . 7
⊢ (𝜑 → (Base‘𝑆) ∈ V) | 
| 16 | 12, 15 | eqeltrid 2283 | 
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ V) | 
| 17 |   | xpsval.f | 
. . . . . . 7
⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | 
| 18 | 17 | mpoexg 6269 | 
. . . . . 6
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝐹 ∈ V) | 
| 19 | 11, 16, 18 | syl2anc 411 | 
. . . . 5
⊢ (𝜑 → 𝐹 ∈ V) | 
| 20 |   | cnvexg 5207 | 
. . . . 5
⊢ (𝐹 ∈ V → ◡𝐹 ∈ V) | 
| 21 | 19, 20 | syl 14 | 
. . . 4
⊢ (𝜑 → ◡𝐹 ∈ V) | 
| 22 |   | xpsval.u | 
. . . . 5
⊢ 𝑈 = (𝐺Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) | 
| 23 |   | xpsval.k | 
. . . . . . 7
⊢ 𝐺 = (Scalar‘𝑅) | 
| 24 |   | scaslid 12830 | 
. . . . . . . . 9
⊢ (Scalar =
Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈
ℕ) | 
| 25 | 24 | slotex 12705 | 
. . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → (Scalar‘𝑅) ∈ V) | 
| 26 | 2, 25 | syl 14 | 
. . . . . . 7
⊢ (𝜑 → (Scalar‘𝑅) ∈ V) | 
| 27 | 23, 26 | eqeltrid 2283 | 
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ V) | 
| 28 |   | 0lt2o 6499 | 
. . . . . . . 8
⊢ ∅
∈ 2o | 
| 29 |   | opexg 4261 | 
. . . . . . . 8
⊢ ((∅
∈ 2o ∧ 𝑅 ∈ 𝑉) → 〈∅, 𝑅〉 ∈ V) | 
| 30 | 28, 2, 29 | sylancr 414 | 
. . . . . . 7
⊢ (𝜑 → 〈∅, 𝑅〉 ∈
V) | 
| 31 |   | 1lt2o 6500 | 
. . . . . . . 8
⊢
1o ∈ 2o | 
| 32 |   | opexg 4261 | 
. . . . . . . 8
⊢
((1o ∈ 2o ∧ 𝑆 ∈ 𝑊) → 〈1o, 𝑆〉 ∈
V) | 
| 33 | 31, 4, 32 | sylancr 414 | 
. . . . . . 7
⊢ (𝜑 → 〈1o, 𝑆〉 ∈
V) | 
| 34 |   | prexg 4244 | 
. . . . . . 7
⊢
((〈∅, 𝑅〉 ∈ V ∧ 〈1o,
𝑆〉 ∈ V) →
{〈∅, 𝑅〉,
〈1o, 𝑆〉} ∈ V) | 
| 35 | 30, 33, 34 | syl2anc 411 | 
. . . . . 6
⊢ (𝜑 → {〈∅, 𝑅〉, 〈1o,
𝑆〉} ∈
V) | 
| 36 |   | prdsex 12940 | 
. . . . . 6
⊢ ((𝐺 ∈ V ∧ {〈∅,
𝑅〉,
〈1o, 𝑆〉} ∈ V) → (𝐺Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) ∈
V) | 
| 37 | 27, 35, 36 | syl2anc 411 | 
. . . . 5
⊢ (𝜑 → (𝐺Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) ∈
V) | 
| 38 | 22, 37 | eqeltrid 2283 | 
. . . 4
⊢ (𝜑 → 𝑈 ∈ V) | 
| 39 |   | imasex 12948 | 
. . . 4
⊢ ((◡𝐹 ∈ V ∧ 𝑈 ∈ V) → (◡𝐹 “s 𝑈) ∈ V) | 
| 40 | 21, 38, 39 | syl2anc 411 | 
. . 3
⊢ (𝜑 → (◡𝐹 “s 𝑈) ∈ V) | 
| 41 |   | fveq2 5558 | 
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | 
| 42 | 41, 6 | eqtr4di 2247 | 
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝑋) | 
| 43 |   | fveq2 5558 | 
. . . . . . . . 9
⊢ (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆)) | 
| 44 | 43, 12 | eqtr4di 2247 | 
. . . . . . . 8
⊢ (𝑠 = 𝑆 → (Base‘𝑠) = 𝑌) | 
| 45 |   | mpoeq12 5982 | 
. . . . . . . 8
⊢
(((Base‘𝑟) =
𝑋 ∧ (Base‘𝑠) = 𝑌) → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})) | 
| 46 | 42, 44, 45 | syl2an 289 | 
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})) | 
| 47 | 46, 17 | eqtr4di 2247 | 
. . . . . 6
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = 𝐹) | 
| 48 | 47 | cnveqd 4842 | 
. . . . 5
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ◡(𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = ◡𝐹) | 
| 49 |   | fveq2 5558 | 
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (Scalar‘𝑟) = (Scalar‘𝑅)) | 
| 50 | 49 | adantr 276 | 
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (Scalar‘𝑟) = (Scalar‘𝑅)) | 
| 51 | 50, 23 | eqtr4di 2247 | 
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (Scalar‘𝑟) = 𝐺) | 
| 52 |   | simpl 109 | 
. . . . . . . . 9
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → 𝑟 = 𝑅) | 
| 53 | 52 | opeq2d 3815 | 
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → 〈∅, 𝑟〉 = 〈∅, 𝑅〉) | 
| 54 |   | simpr 110 | 
. . . . . . . . 9
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆) | 
| 55 | 54 | opeq2d 3815 | 
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → 〈1o, 𝑠〉 = 〈1o,
𝑆〉) | 
| 56 | 53, 55 | preq12d 3707 | 
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → {〈∅, 𝑟〉, 〈1o, 𝑠〉} = {〈∅, 𝑅〉, 〈1o,
𝑆〉}) | 
| 57 | 51, 56 | oveq12d 5940 | 
. . . . . 6
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ((Scalar‘𝑟)Xs{〈∅, 𝑟〉, 〈1o, 𝑠〉}) = (𝐺Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) | 
| 58 | 57, 22 | eqtr4di 2247 | 
. . . . 5
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ((Scalar‘𝑟)Xs{〈∅, 𝑟〉, 〈1o, 𝑠〉}) = 𝑈) | 
| 59 | 48, 58 | oveq12d 5940 | 
. . . 4
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (◡(𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})
“s ((Scalar‘𝑟)Xs{〈∅, 𝑟〉, 〈1o, 𝑠〉})) = (◡𝐹 “s 𝑈)) | 
| 60 |   | df-xps 12947 | 
. . . 4
⊢ 
×s = (𝑟 ∈ V, 𝑠 ∈ V ↦ (◡(𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})
“s ((Scalar‘𝑟)Xs{〈∅, 𝑟〉, 〈1o, 𝑠〉}))) | 
| 61 | 59, 60 | ovmpoga 6052 | 
. . 3
⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V ∧ (◡𝐹 “s 𝑈) ∈ V) → (𝑅 ×s
𝑆) = (◡𝐹 “s 𝑈)) | 
| 62 | 3, 5, 40, 61 | syl3anc 1249 | 
. 2
⊢ (𝜑 → (𝑅 ×s 𝑆) = (◡𝐹 “s 𝑈)) | 
| 63 | 1, 62 | eqtrid 2241 | 
1
⊢ (𝜑 → 𝑇 = (◡𝐹 “s 𝑈)) |