Step | Hyp | Ref
| Expression |
1 | | xpsval.t |
. 2
⊢ 𝑇 = (𝑅 ×s 𝑆) |
2 | | xpsval.1 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝑉) |
3 | 2 | elexd 2752 |
. . 3
⊢ (𝜑 → 𝑅 ∈ V) |
4 | | xpsval.2 |
. . . 4
⊢ (𝜑 → 𝑆 ∈ 𝑊) |
5 | 4 | elexd 2752 |
. . 3
⊢ (𝜑 → 𝑆 ∈ V) |
6 | | xpsval.x |
. . . . . . 7
⊢ 𝑋 = (Base‘𝑅) |
7 | | basfn 12523 |
. . . . . . . 8
⊢ Base Fn
V |
8 | | funfvex 5534 |
. . . . . . . . 9
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) |
9 | 8 | funfni 5318 |
. . . . . . . 8
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) |
10 | 7, 3, 9 | sylancr 414 |
. . . . . . 7
⊢ (𝜑 → (Base‘𝑅) ∈ V) |
11 | 6, 10 | eqeltrid 2264 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ V) |
12 | | xpsval.y |
. . . . . . 7
⊢ 𝑌 = (Base‘𝑆) |
13 | | funfvex 5534 |
. . . . . . . . 9
⊢ ((Fun
Base ∧ 𝑆 ∈ dom
Base) → (Base‘𝑆)
∈ V) |
14 | 13 | funfni 5318 |
. . . . . . . 8
⊢ ((Base Fn
V ∧ 𝑆 ∈ V) →
(Base‘𝑆) ∈
V) |
15 | 7, 5, 14 | sylancr 414 |
. . . . . . 7
⊢ (𝜑 → (Base‘𝑆) ∈ V) |
16 | 12, 15 | eqeltrid 2264 |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ V) |
17 | | xpsval.f |
. . . . . . 7
⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) |
18 | 17 | mpoexg 6215 |
. . . . . 6
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝐹 ∈ V) |
19 | 11, 16, 18 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ V) |
20 | | cnvexg 5168 |
. . . . 5
⊢ (𝐹 ∈ V → ◡𝐹 ∈ V) |
21 | 19, 20 | syl 14 |
. . . 4
⊢ (𝜑 → ◡𝐹 ∈ V) |
22 | | xpsval.u |
. . . . 5
⊢ 𝑈 = (𝐺Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) |
23 | | xpsval.k |
. . . . . . 7
⊢ 𝐺 = (Scalar‘𝑅) |
24 | | scaslid 12614 |
. . . . . . . . 9
⊢ (Scalar =
Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈
ℕ) |
25 | 24 | slotex 12492 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → (Scalar‘𝑅) ∈ V) |
26 | 2, 25 | syl 14 |
. . . . . . 7
⊢ (𝜑 → (Scalar‘𝑅) ∈ V) |
27 | 23, 26 | eqeltrid 2264 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ V) |
28 | | 0lt2o 6445 |
. . . . . . . 8
⊢ ∅
∈ 2o |
29 | | opexg 4230 |
. . . . . . . 8
⊢ ((∅
∈ 2o ∧ 𝑅 ∈ 𝑉) → 〈∅, 𝑅〉 ∈ V) |
30 | 28, 2, 29 | sylancr 414 |
. . . . . . 7
⊢ (𝜑 → 〈∅, 𝑅〉 ∈
V) |
31 | | 1lt2o 6446 |
. . . . . . . 8
⊢
1o ∈ 2o |
32 | | opexg 4230 |
. . . . . . . 8
⊢
((1o ∈ 2o ∧ 𝑆 ∈ 𝑊) → 〈1o, 𝑆〉 ∈
V) |
33 | 31, 4, 32 | sylancr 414 |
. . . . . . 7
⊢ (𝜑 → 〈1o, 𝑆〉 ∈
V) |
34 | | prexg 4213 |
. . . . . . 7
⊢
((〈∅, 𝑅〉 ∈ V ∧ 〈1o,
𝑆〉 ∈ V) →
{〈∅, 𝑅〉,
〈1o, 𝑆〉} ∈ V) |
35 | 30, 33, 34 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 → {〈∅, 𝑅〉, 〈1o,
𝑆〉} ∈
V) |
36 | | prdsex 12724 |
. . . . . 6
⊢ ((𝐺 ∈ V ∧ {〈∅,
𝑅〉,
〈1o, 𝑆〉} ∈ V) → (𝐺Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) ∈
V) |
37 | 27, 35, 36 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → (𝐺Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) ∈
V) |
38 | 22, 37 | eqeltrid 2264 |
. . . 4
⊢ (𝜑 → 𝑈 ∈ V) |
39 | | imasex 12732 |
. . . 4
⊢ ((◡𝐹 ∈ V ∧ 𝑈 ∈ V) → (◡𝐹 “s 𝑈) ∈ V) |
40 | 21, 38, 39 | syl2anc 411 |
. . 3
⊢ (𝜑 → (◡𝐹 “s 𝑈) ∈ V) |
41 | | fveq2 5517 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) |
42 | 41, 6 | eqtr4di 2228 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝑋) |
43 | | fveq2 5517 |
. . . . . . . . 9
⊢ (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆)) |
44 | 43, 12 | eqtr4di 2228 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → (Base‘𝑠) = 𝑌) |
45 | | mpoeq12 5938 |
. . . . . . . 8
⊢
(((Base‘𝑟) =
𝑋 ∧ (Base‘𝑠) = 𝑌) → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})) |
46 | 42, 44, 45 | syl2an 289 |
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})) |
47 | 46, 17 | eqtr4di 2228 |
. . . . . 6
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = 𝐹) |
48 | 47 | cnveqd 4805 |
. . . . 5
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ◡(𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = ◡𝐹) |
49 | | fveq2 5517 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (Scalar‘𝑟) = (Scalar‘𝑅)) |
50 | 49 | adantr 276 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (Scalar‘𝑟) = (Scalar‘𝑅)) |
51 | 50, 23 | eqtr4di 2228 |
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (Scalar‘𝑟) = 𝐺) |
52 | | simpl 109 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → 𝑟 = 𝑅) |
53 | 52 | opeq2d 3787 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → 〈∅, 𝑟〉 = 〈∅, 𝑅〉) |
54 | | simpr 110 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆) |
55 | 54 | opeq2d 3787 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → 〈1o, 𝑠〉 = 〈1o,
𝑆〉) |
56 | 53, 55 | preq12d 3679 |
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → {〈∅, 𝑟〉, 〈1o, 𝑠〉} = {〈∅, 𝑅〉, 〈1o,
𝑆〉}) |
57 | 51, 56 | oveq12d 5896 |
. . . . . 6
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ((Scalar‘𝑟)Xs{〈∅, 𝑟〉, 〈1o, 𝑠〉}) = (𝐺Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) |
58 | 57, 22 | eqtr4di 2228 |
. . . . 5
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ((Scalar‘𝑟)Xs{〈∅, 𝑟〉, 〈1o, 𝑠〉}) = 𝑈) |
59 | 48, 58 | oveq12d 5896 |
. . . 4
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (◡(𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})
“s ((Scalar‘𝑟)Xs{〈∅, 𝑟〉, 〈1o, 𝑠〉})) = (◡𝐹 “s 𝑈)) |
60 | | df-xps 12731 |
. . . 4
⊢
×s = (𝑟 ∈ V, 𝑠 ∈ V ↦ (◡(𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})
“s ((Scalar‘𝑟)Xs{〈∅, 𝑟〉, 〈1o, 𝑠〉}))) |
61 | 59, 60 | ovmpoga 6007 |
. . 3
⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V ∧ (◡𝐹 “s 𝑈) ∈ V) → (𝑅 ×s
𝑆) = (◡𝐹 “s 𝑈)) |
62 | 3, 5, 40, 61 | syl3anc 1238 |
. 2
⊢ (𝜑 → (𝑅 ×s 𝑆) = (◡𝐹 “s 𝑈)) |
63 | 1, 62 | eqtrid 2222 |
1
⊢ (𝜑 → 𝑇 = (◡𝐹 “s 𝑈)) |