ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasex GIF version

Theorem imasex 13007
Description: Existence of the image structure. (Contributed by Jim Kingdon, 13-Mar-2025.)
Assertion
Ref Expression
imasex ((𝐹𝑉𝑅𝑊) → (𝐹s 𝑅) ∈ V)

Proof of Theorem imasex
Dummy variables 𝑓 𝑝 𝑞 𝑟 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2774 . . . 4 (𝐹𝑉𝐹 ∈ V)
21adantr 276 . . 3 ((𝐹𝑉𝑅𝑊) → 𝐹 ∈ V)
3 elex 2774 . . . 4 (𝑅𝑊𝑅 ∈ V)
43adantl 277 . . 3 ((𝐹𝑉𝑅𝑊) → 𝑅 ∈ V)
5 basfn 12761 . . . . . 6 Base Fn V
6 funfvex 5578 . . . . . . 7 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
76funfni 5361 . . . . . 6 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
85, 3, 7sylancr 414 . . . . 5 (𝑅𝑊 → (Base‘𝑅) ∈ V)
98adantl 277 . . . 4 ((𝐹𝑉𝑅𝑊) → (Base‘𝑅) ∈ V)
10 basendxnn 12759 . . . . . . 7 (Base‘ndx) ∈ ℕ
11 rnexg 4932 . . . . . . . 8 (𝐹𝑉 → ran 𝐹 ∈ V)
1211adantr 276 . . . . . . 7 ((𝐹𝑉𝑅𝑊) → ran 𝐹 ∈ V)
13 opexg 4262 . . . . . . 7 (((Base‘ndx) ∈ ℕ ∧ ran 𝐹 ∈ V) → ⟨(Base‘ndx), ran 𝐹⟩ ∈ V)
1410, 12, 13sylancr 414 . . . . . 6 ((𝐹𝑉𝑅𝑊) → ⟨(Base‘ndx), ran 𝐹⟩ ∈ V)
15 plusgndxnn 12814 . . . . . . 7 (+g‘ndx) ∈ ℕ
16 vex 2766 . . . . . . . 8 𝑣 ∈ V
17 vex 2766 . . . . . . . . . . . . . . . 16 𝑝 ∈ V
1817a1i 9 . . . . . . . . . . . . . . 15 ((𝐹𝑉𝑅𝑊) → 𝑝 ∈ V)
19 fvexg 5580 . . . . . . . . . . . . . . 15 ((𝐹𝑉𝑝 ∈ V) → (𝐹𝑝) ∈ V)
2018, 19syldan 282 . . . . . . . . . . . . . 14 ((𝐹𝑉𝑅𝑊) → (𝐹𝑝) ∈ V)
21 vex 2766 . . . . . . . . . . . . . . . 16 𝑞 ∈ V
2221a1i 9 . . . . . . . . . . . . . . 15 ((𝐹𝑉𝑅𝑊) → 𝑞 ∈ V)
23 fvexg 5580 . . . . . . . . . . . . . . 15 ((𝐹𝑉𝑞 ∈ V) → (𝐹𝑞) ∈ V)
2422, 23syldan 282 . . . . . . . . . . . . . 14 ((𝐹𝑉𝑅𝑊) → (𝐹𝑞) ∈ V)
25 opexg 4262 . . . . . . . . . . . . . 14 (((𝐹𝑝) ∈ V ∧ (𝐹𝑞) ∈ V) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V)
2620, 24, 25syl2anc 411 . . . . . . . . . . . . 13 ((𝐹𝑉𝑅𝑊) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V)
27 plusgslid 12815 . . . . . . . . . . . . . . . . 17 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
2827slotex 12730 . . . . . . . . . . . . . . . 16 (𝑅𝑊 → (+g𝑅) ∈ V)
2928adantl 277 . . . . . . . . . . . . . . 15 ((𝐹𝑉𝑅𝑊) → (+g𝑅) ∈ V)
30 ovexg 5959 . . . . . . . . . . . . . . 15 ((𝑝 ∈ V ∧ (+g𝑅) ∈ V ∧ 𝑞 ∈ V) → (𝑝(+g𝑅)𝑞) ∈ V)
3118, 29, 22, 30syl3anc 1249 . . . . . . . . . . . . . 14 ((𝐹𝑉𝑅𝑊) → (𝑝(+g𝑅)𝑞) ∈ V)
32 fvexg 5580 . . . . . . . . . . . . . 14 ((𝐹𝑉 ∧ (𝑝(+g𝑅)𝑞) ∈ V) → (𝐹‘(𝑝(+g𝑅)𝑞)) ∈ V)
3331, 32syldan 282 . . . . . . . . . . . . 13 ((𝐹𝑉𝑅𝑊) → (𝐹‘(𝑝(+g𝑅)𝑞)) ∈ V)
34 opexg 4262 . . . . . . . . . . . . 13 ((⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V ∧ (𝐹‘(𝑝(+g𝑅)𝑞)) ∈ V) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩ ∈ V)
3526, 33, 34syl2anc 411 . . . . . . . . . . . 12 ((𝐹𝑉𝑅𝑊) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩ ∈ V)
36 snexg 4218 . . . . . . . . . . . 12 (⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩ ∈ V → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
3735, 36syl 14 . . . . . . . . . . 11 ((𝐹𝑉𝑅𝑊) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
3837ralrimivw 2571 . . . . . . . . . 10 ((𝐹𝑉𝑅𝑊) → ∀𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
39 iunexg 6185 . . . . . . . . . 10 ((𝑣 ∈ V ∧ ∀𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V) → 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
4016, 38, 39sylancr 414 . . . . . . . . 9 ((𝐹𝑉𝑅𝑊) → 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
4140ralrimivw 2571 . . . . . . . 8 ((𝐹𝑉𝑅𝑊) → ∀𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
42 iunexg 6185 . . . . . . . 8 ((𝑣 ∈ V ∧ ∀𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
4316, 41, 42sylancr 414 . . . . . . 7 ((𝐹𝑉𝑅𝑊) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
44 opexg 4262 . . . . . . 7 (((+g‘ndx) ∈ ℕ ∧ 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V) → ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩ ∈ V)
4515, 43, 44sylancr 414 . . . . . 6 ((𝐹𝑉𝑅𝑊) → ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩ ∈ V)
46 mulrslid 12834 . . . . . . . 8 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
4746simpri 113 . . . . . . 7 (.r‘ndx) ∈ ℕ
4846slotex 12730 . . . . . . . . . . . . . . . 16 (𝑅𝑊 → (.r𝑅) ∈ V)
4948adantl 277 . . . . . . . . . . . . . . 15 ((𝐹𝑉𝑅𝑊) → (.r𝑅) ∈ V)
50 ovexg 5959 . . . . . . . . . . . . . . 15 ((𝑝 ∈ V ∧ (.r𝑅) ∈ V ∧ 𝑞 ∈ V) → (𝑝(.r𝑅)𝑞) ∈ V)
5118, 49, 22, 50syl3anc 1249 . . . . . . . . . . . . . 14 ((𝐹𝑉𝑅𝑊) → (𝑝(.r𝑅)𝑞) ∈ V)
52 fvexg 5580 . . . . . . . . . . . . . 14 ((𝐹𝑉 ∧ (𝑝(.r𝑅)𝑞) ∈ V) → (𝐹‘(𝑝(.r𝑅)𝑞)) ∈ V)
5351, 52syldan 282 . . . . . . . . . . . . 13 ((𝐹𝑉𝑅𝑊) → (𝐹‘(𝑝(.r𝑅)𝑞)) ∈ V)
54 opexg 4262 . . . . . . . . . . . . 13 ((⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V ∧ (𝐹‘(𝑝(.r𝑅)𝑞)) ∈ V) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩ ∈ V)
5526, 53, 54syl2anc 411 . . . . . . . . . . . 12 ((𝐹𝑉𝑅𝑊) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩ ∈ V)
56 snexg 4218 . . . . . . . . . . . 12 (⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩ ∈ V → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
5755, 56syl 14 . . . . . . . . . . 11 ((𝐹𝑉𝑅𝑊) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
5857ralrimivw 2571 . . . . . . . . . 10 ((𝐹𝑉𝑅𝑊) → ∀𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
59 iunexg 6185 . . . . . . . . . 10 ((𝑣 ∈ V ∧ ∀𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V) → 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
6016, 58, 59sylancr 414 . . . . . . . . 9 ((𝐹𝑉𝑅𝑊) → 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
6160ralrimivw 2571 . . . . . . . 8 ((𝐹𝑉𝑅𝑊) → ∀𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
62 iunexg 6185 . . . . . . . 8 ((𝑣 ∈ V ∧ ∀𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
6316, 61, 62sylancr 414 . . . . . . 7 ((𝐹𝑉𝑅𝑊) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
64 opexg 4262 . . . . . . 7 (((.r‘ndx) ∈ ℕ ∧ 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V) → ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩ ∈ V)
6547, 63, 64sylancr 414 . . . . . 6 ((𝐹𝑉𝑅𝑊) → ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩ ∈ V)
66 tpexg 4480 . . . . . 6 ((⟨(Base‘ndx), ran 𝐹⟩ ∈ V ∧ ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩ ∈ V ∧ ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩ ∈ V) → {⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V)
6714, 45, 65, 66syl3anc 1249 . . . . 5 ((𝐹𝑉𝑅𝑊) → {⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V)
6867alrimiv 1888 . . . 4 ((𝐹𝑉𝑅𝑊) → ∀𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V)
69 csbexga 4162 . . . 4 (((Base‘𝑅) ∈ V ∧ ∀𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V) → (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V)
709, 68, 69syl2anc 411 . . 3 ((𝐹𝑉𝑅𝑊) → (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V)
71 rneq 4894 . . . . . . 7 (𝑓 = 𝐹 → ran 𝑓 = ran 𝐹)
7271opeq2d 3816 . . . . . 6 (𝑓 = 𝐹 → ⟨(Base‘ndx), ran 𝑓⟩ = ⟨(Base‘ndx), ran 𝐹⟩)
73 fveq1 5560 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓𝑝) = (𝐹𝑝))
74 fveq1 5560 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓𝑞) = (𝐹𝑞))
7573, 74opeq12d 3817 . . . . . . . . . . 11 (𝑓 = 𝐹 → ⟨(𝑓𝑝), (𝑓𝑞)⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩)
76 fveq1 5560 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓‘(𝑝(+g𝑟)𝑞)) = (𝐹‘(𝑝(+g𝑟)𝑞)))
7775, 76opeq12d 3817 . . . . . . . . . 10 (𝑓 = 𝐹 → ⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩)
7877sneqd 3636 . . . . . . . . 9 (𝑓 = 𝐹 → {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩})
7978iuneq2d 3942 . . . . . . . 8 (𝑓 = 𝐹 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩})
8079iuneq2d 3942 . . . . . . 7 (𝑓 = 𝐹 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩})
8180opeq2d 3816 . . . . . 6 (𝑓 = 𝐹 → ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩ = ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩)
82 fveq1 5560 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓‘(𝑝(.r𝑟)𝑞)) = (𝐹‘(𝑝(.r𝑟)𝑞)))
8375, 82opeq12d 3817 . . . . . . . . . 10 (𝑓 = 𝐹 → ⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩)
8483sneqd 3636 . . . . . . . . 9 (𝑓 = 𝐹 → {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩})
8584iuneq2d 3942 . . . . . . . 8 (𝑓 = 𝐹 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩})
8685iuneq2d 3942 . . . . . . 7 (𝑓 = 𝐹 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩})
8786opeq2d 3816 . . . . . 6 (𝑓 = 𝐹 → ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩ = ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩)
8872, 81, 87tpeq123d 3715 . . . . 5 (𝑓 = 𝐹 → {⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩} = {⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩})
8988csbeq2dv 3110 . . . 4 (𝑓 = 𝐹(Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩} = (Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩})
90 fveq2 5561 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
9190csbeq1d 3091 . . . . 5 (𝑟 = 𝑅(Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩} = (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩})
92 eqidd 2197 . . . . . . 7 (𝑟 = 𝑅 → ⟨(Base‘ndx), ran 𝐹⟩ = ⟨(Base‘ndx), ran 𝐹⟩)
93 fveq2 5561 . . . . . . . . . . . . . 14 (𝑟 = 𝑅 → (+g𝑟) = (+g𝑅))
9493oveqd 5942 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (𝑝(+g𝑟)𝑞) = (𝑝(+g𝑅)𝑞))
9594fveq2d 5565 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (𝐹‘(𝑝(+g𝑟)𝑞)) = (𝐹‘(𝑝(+g𝑅)𝑞)))
9695opeq2d 3816 . . . . . . . . . . 11 (𝑟 = 𝑅 → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩)
9796sneqd 3636 . . . . . . . . . 10 (𝑟 = 𝑅 → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩})
9897iuneq2d 3942 . . . . . . . . 9 (𝑟 = 𝑅 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩} = 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩})
9998iuneq2d 3942 . . . . . . . 8 (𝑟 = 𝑅 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩} = 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩})
10099opeq2d 3816 . . . . . . 7 (𝑟 = 𝑅 → ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩ = ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩)
101 fveq2 5561 . . . . . . . . . . . . . 14 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
102101oveqd 5942 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (𝑝(.r𝑟)𝑞) = (𝑝(.r𝑅)𝑞))
103102fveq2d 5565 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (𝐹‘(𝑝(.r𝑟)𝑞)) = (𝐹‘(𝑝(.r𝑅)𝑞)))
104103opeq2d 3816 . . . . . . . . . . 11 (𝑟 = 𝑅 → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩)
105104sneqd 3636 . . . . . . . . . 10 (𝑟 = 𝑅 → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩})
106105iuneq2d 3942 . . . . . . . . 9 (𝑟 = 𝑅 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩} = 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩})
107106iuneq2d 3942 . . . . . . . 8 (𝑟 = 𝑅 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩} = 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩})
108107opeq2d 3816 . . . . . . 7 (𝑟 = 𝑅 → ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩ = ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩)
10992, 100, 108tpeq123d 3715 . . . . . 6 (𝑟 = 𝑅 → {⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩} = {⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩})
110109csbeq2dv 3110 . . . . 5 (𝑟 = 𝑅(Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩} = (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩})
11191, 110eqtrd 2229 . . . 4 (𝑟 = 𝑅(Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩} = (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩})
112 df-iimas 13004 . . . 4 s = (𝑓 ∈ V, 𝑟 ∈ V ↦ (Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩})
11389, 111, 112ovmpog 6061 . . 3 ((𝐹 ∈ V ∧ 𝑅 ∈ V ∧ (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V) → (𝐹s 𝑅) = (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩})
1142, 4, 70, 113syl3anc 1249 . 2 ((𝐹𝑉𝑅𝑊) → (𝐹s 𝑅) = (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩})
115114, 70eqeltrd 2273 1 ((𝐹𝑉𝑅𝑊) → (𝐹s 𝑅) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1362   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  csb 3084  {csn 3623  {ctp 3625  cop 3626   ciun 3917  ran crn 4665   Fn wfn 5254  cfv 5259  (class class class)co 5925  cn 9007  ndxcnx 12700  Slot cslot 12702  Basecbs 12703  +gcplusg 12780  .rcmulr 12781  s cimas 13001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mulr 12794  df-iimas 13004
This theorem is referenced by:  imasmulr  13011  qusval  13025  qusex  13027  xpsval  13054
  Copyright terms: Public domain W3C validator