ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasex GIF version

Theorem imasex 13252
Description: Existence of the image structure. (Contributed by Jim Kingdon, 13-Mar-2025.)
Assertion
Ref Expression
imasex ((𝐹𝑉𝑅𝑊) → (𝐹s 𝑅) ∈ V)

Proof of Theorem imasex
Dummy variables 𝑓 𝑝 𝑞 𝑟 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2788 . . . 4 (𝐹𝑉𝐹 ∈ V)
21adantr 276 . . 3 ((𝐹𝑉𝑅𝑊) → 𝐹 ∈ V)
3 elex 2788 . . . 4 (𝑅𝑊𝑅 ∈ V)
43adantl 277 . . 3 ((𝐹𝑉𝑅𝑊) → 𝑅 ∈ V)
5 basfn 13005 . . . . . 6 Base Fn V
6 funfvex 5616 . . . . . . 7 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
76funfni 5395 . . . . . 6 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
85, 3, 7sylancr 414 . . . . 5 (𝑅𝑊 → (Base‘𝑅) ∈ V)
98adantl 277 . . . 4 ((𝐹𝑉𝑅𝑊) → (Base‘𝑅) ∈ V)
10 basendxnn 13003 . . . . . . 7 (Base‘ndx) ∈ ℕ
11 rnexg 4962 . . . . . . . 8 (𝐹𝑉 → ran 𝐹 ∈ V)
1211adantr 276 . . . . . . 7 ((𝐹𝑉𝑅𝑊) → ran 𝐹 ∈ V)
13 opexg 4290 . . . . . . 7 (((Base‘ndx) ∈ ℕ ∧ ran 𝐹 ∈ V) → ⟨(Base‘ndx), ran 𝐹⟩ ∈ V)
1410, 12, 13sylancr 414 . . . . . 6 ((𝐹𝑉𝑅𝑊) → ⟨(Base‘ndx), ran 𝐹⟩ ∈ V)
15 plusgndxnn 13058 . . . . . . 7 (+g‘ndx) ∈ ℕ
16 vex 2779 . . . . . . . 8 𝑣 ∈ V
17 vex 2779 . . . . . . . . . . . . . . . 16 𝑝 ∈ V
1817a1i 9 . . . . . . . . . . . . . . 15 ((𝐹𝑉𝑅𝑊) → 𝑝 ∈ V)
19 fvexg 5618 . . . . . . . . . . . . . . 15 ((𝐹𝑉𝑝 ∈ V) → (𝐹𝑝) ∈ V)
2018, 19syldan 282 . . . . . . . . . . . . . 14 ((𝐹𝑉𝑅𝑊) → (𝐹𝑝) ∈ V)
21 vex 2779 . . . . . . . . . . . . . . . 16 𝑞 ∈ V
2221a1i 9 . . . . . . . . . . . . . . 15 ((𝐹𝑉𝑅𝑊) → 𝑞 ∈ V)
23 fvexg 5618 . . . . . . . . . . . . . . 15 ((𝐹𝑉𝑞 ∈ V) → (𝐹𝑞) ∈ V)
2422, 23syldan 282 . . . . . . . . . . . . . 14 ((𝐹𝑉𝑅𝑊) → (𝐹𝑞) ∈ V)
25 opexg 4290 . . . . . . . . . . . . . 14 (((𝐹𝑝) ∈ V ∧ (𝐹𝑞) ∈ V) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V)
2620, 24, 25syl2anc 411 . . . . . . . . . . . . 13 ((𝐹𝑉𝑅𝑊) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V)
27 plusgslid 13059 . . . . . . . . . . . . . . . . 17 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
2827slotex 12974 . . . . . . . . . . . . . . . 16 (𝑅𝑊 → (+g𝑅) ∈ V)
2928adantl 277 . . . . . . . . . . . . . . 15 ((𝐹𝑉𝑅𝑊) → (+g𝑅) ∈ V)
30 ovexg 6001 . . . . . . . . . . . . . . 15 ((𝑝 ∈ V ∧ (+g𝑅) ∈ V ∧ 𝑞 ∈ V) → (𝑝(+g𝑅)𝑞) ∈ V)
3118, 29, 22, 30syl3anc 1250 . . . . . . . . . . . . . 14 ((𝐹𝑉𝑅𝑊) → (𝑝(+g𝑅)𝑞) ∈ V)
32 fvexg 5618 . . . . . . . . . . . . . 14 ((𝐹𝑉 ∧ (𝑝(+g𝑅)𝑞) ∈ V) → (𝐹‘(𝑝(+g𝑅)𝑞)) ∈ V)
3331, 32syldan 282 . . . . . . . . . . . . 13 ((𝐹𝑉𝑅𝑊) → (𝐹‘(𝑝(+g𝑅)𝑞)) ∈ V)
34 opexg 4290 . . . . . . . . . . . . 13 ((⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V ∧ (𝐹‘(𝑝(+g𝑅)𝑞)) ∈ V) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩ ∈ V)
3526, 33, 34syl2anc 411 . . . . . . . . . . . 12 ((𝐹𝑉𝑅𝑊) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩ ∈ V)
36 snexg 4244 . . . . . . . . . . . 12 (⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩ ∈ V → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
3735, 36syl 14 . . . . . . . . . . 11 ((𝐹𝑉𝑅𝑊) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
3837ralrimivw 2582 . . . . . . . . . 10 ((𝐹𝑉𝑅𝑊) → ∀𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
39 iunexg 6227 . . . . . . . . . 10 ((𝑣 ∈ V ∧ ∀𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V) → 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
4016, 38, 39sylancr 414 . . . . . . . . 9 ((𝐹𝑉𝑅𝑊) → 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
4140ralrimivw 2582 . . . . . . . 8 ((𝐹𝑉𝑅𝑊) → ∀𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
42 iunexg 6227 . . . . . . . 8 ((𝑣 ∈ V ∧ ∀𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
4316, 41, 42sylancr 414 . . . . . . 7 ((𝐹𝑉𝑅𝑊) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
44 opexg 4290 . . . . . . 7 (((+g‘ndx) ∈ ℕ ∧ 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V) → ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩ ∈ V)
4515, 43, 44sylancr 414 . . . . . 6 ((𝐹𝑉𝑅𝑊) → ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩ ∈ V)
46 mulrslid 13079 . . . . . . . 8 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
4746simpri 113 . . . . . . 7 (.r‘ndx) ∈ ℕ
4846slotex 12974 . . . . . . . . . . . . . . . 16 (𝑅𝑊 → (.r𝑅) ∈ V)
4948adantl 277 . . . . . . . . . . . . . . 15 ((𝐹𝑉𝑅𝑊) → (.r𝑅) ∈ V)
50 ovexg 6001 . . . . . . . . . . . . . . 15 ((𝑝 ∈ V ∧ (.r𝑅) ∈ V ∧ 𝑞 ∈ V) → (𝑝(.r𝑅)𝑞) ∈ V)
5118, 49, 22, 50syl3anc 1250 . . . . . . . . . . . . . 14 ((𝐹𝑉𝑅𝑊) → (𝑝(.r𝑅)𝑞) ∈ V)
52 fvexg 5618 . . . . . . . . . . . . . 14 ((𝐹𝑉 ∧ (𝑝(.r𝑅)𝑞) ∈ V) → (𝐹‘(𝑝(.r𝑅)𝑞)) ∈ V)
5351, 52syldan 282 . . . . . . . . . . . . 13 ((𝐹𝑉𝑅𝑊) → (𝐹‘(𝑝(.r𝑅)𝑞)) ∈ V)
54 opexg 4290 . . . . . . . . . . . . 13 ((⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V ∧ (𝐹‘(𝑝(.r𝑅)𝑞)) ∈ V) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩ ∈ V)
5526, 53, 54syl2anc 411 . . . . . . . . . . . 12 ((𝐹𝑉𝑅𝑊) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩ ∈ V)
56 snexg 4244 . . . . . . . . . . . 12 (⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩ ∈ V → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
5755, 56syl 14 . . . . . . . . . . 11 ((𝐹𝑉𝑅𝑊) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
5857ralrimivw 2582 . . . . . . . . . 10 ((𝐹𝑉𝑅𝑊) → ∀𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
59 iunexg 6227 . . . . . . . . . 10 ((𝑣 ∈ V ∧ ∀𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V) → 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
6016, 58, 59sylancr 414 . . . . . . . . 9 ((𝐹𝑉𝑅𝑊) → 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
6160ralrimivw 2582 . . . . . . . 8 ((𝐹𝑉𝑅𝑊) → ∀𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
62 iunexg 6227 . . . . . . . 8 ((𝑣 ∈ V ∧ ∀𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
6316, 61, 62sylancr 414 . . . . . . 7 ((𝐹𝑉𝑅𝑊) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
64 opexg 4290 . . . . . . 7 (((.r‘ndx) ∈ ℕ ∧ 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V) → ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩ ∈ V)
6547, 63, 64sylancr 414 . . . . . 6 ((𝐹𝑉𝑅𝑊) → ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩ ∈ V)
66 tpexg 4509 . . . . . 6 ((⟨(Base‘ndx), ran 𝐹⟩ ∈ V ∧ ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩ ∈ V ∧ ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩ ∈ V) → {⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V)
6714, 45, 65, 66syl3anc 1250 . . . . 5 ((𝐹𝑉𝑅𝑊) → {⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V)
6867alrimiv 1898 . . . 4 ((𝐹𝑉𝑅𝑊) → ∀𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V)
69 csbexga 4188 . . . 4 (((Base‘𝑅) ∈ V ∧ ∀𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V) → (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V)
709, 68, 69syl2anc 411 . . 3 ((𝐹𝑉𝑅𝑊) → (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V)
71 rneq 4924 . . . . . . 7 (𝑓 = 𝐹 → ran 𝑓 = ran 𝐹)
7271opeq2d 3840 . . . . . 6 (𝑓 = 𝐹 → ⟨(Base‘ndx), ran 𝑓⟩ = ⟨(Base‘ndx), ran 𝐹⟩)
73 fveq1 5598 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓𝑝) = (𝐹𝑝))
74 fveq1 5598 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓𝑞) = (𝐹𝑞))
7573, 74opeq12d 3841 . . . . . . . . . . 11 (𝑓 = 𝐹 → ⟨(𝑓𝑝), (𝑓𝑞)⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩)
76 fveq1 5598 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓‘(𝑝(+g𝑟)𝑞)) = (𝐹‘(𝑝(+g𝑟)𝑞)))
7775, 76opeq12d 3841 . . . . . . . . . 10 (𝑓 = 𝐹 → ⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩)
7877sneqd 3656 . . . . . . . . 9 (𝑓 = 𝐹 → {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩})
7978iuneq2d 3966 . . . . . . . 8 (𝑓 = 𝐹 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩})
8079iuneq2d 3966 . . . . . . 7 (𝑓 = 𝐹 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩})
8180opeq2d 3840 . . . . . 6 (𝑓 = 𝐹 → ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩ = ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩)
82 fveq1 5598 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓‘(𝑝(.r𝑟)𝑞)) = (𝐹‘(𝑝(.r𝑟)𝑞)))
8375, 82opeq12d 3841 . . . . . . . . . 10 (𝑓 = 𝐹 → ⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩)
8483sneqd 3656 . . . . . . . . 9 (𝑓 = 𝐹 → {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩})
8584iuneq2d 3966 . . . . . . . 8 (𝑓 = 𝐹 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩})
8685iuneq2d 3966 . . . . . . 7 (𝑓 = 𝐹 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩})
8786opeq2d 3840 . . . . . 6 (𝑓 = 𝐹 → ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩ = ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩)
8872, 81, 87tpeq123d 3735 . . . . 5 (𝑓 = 𝐹 → {⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩} = {⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩})
8988csbeq2dv 3127 . . . 4 (𝑓 = 𝐹(Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩} = (Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩})
90 fveq2 5599 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
9190csbeq1d 3108 . . . . 5 (𝑟 = 𝑅(Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩} = (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩})
92 eqidd 2208 . . . . . . 7 (𝑟 = 𝑅 → ⟨(Base‘ndx), ran 𝐹⟩ = ⟨(Base‘ndx), ran 𝐹⟩)
93 fveq2 5599 . . . . . . . . . . . . . 14 (𝑟 = 𝑅 → (+g𝑟) = (+g𝑅))
9493oveqd 5984 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (𝑝(+g𝑟)𝑞) = (𝑝(+g𝑅)𝑞))
9594fveq2d 5603 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (𝐹‘(𝑝(+g𝑟)𝑞)) = (𝐹‘(𝑝(+g𝑅)𝑞)))
9695opeq2d 3840 . . . . . . . . . . 11 (𝑟 = 𝑅 → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩)
9796sneqd 3656 . . . . . . . . . 10 (𝑟 = 𝑅 → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩})
9897iuneq2d 3966 . . . . . . . . 9 (𝑟 = 𝑅 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩} = 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩})
9998iuneq2d 3966 . . . . . . . 8 (𝑟 = 𝑅 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩} = 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩})
10099opeq2d 3840 . . . . . . 7 (𝑟 = 𝑅 → ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩ = ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩)
101 fveq2 5599 . . . . . . . . . . . . . 14 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
102101oveqd 5984 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (𝑝(.r𝑟)𝑞) = (𝑝(.r𝑅)𝑞))
103102fveq2d 5603 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (𝐹‘(𝑝(.r𝑟)𝑞)) = (𝐹‘(𝑝(.r𝑅)𝑞)))
104103opeq2d 3840 . . . . . . . . . . 11 (𝑟 = 𝑅 → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩)
105104sneqd 3656 . . . . . . . . . 10 (𝑟 = 𝑅 → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩})
106105iuneq2d 3966 . . . . . . . . 9 (𝑟 = 𝑅 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩} = 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩})
107106iuneq2d 3966 . . . . . . . 8 (𝑟 = 𝑅 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩} = 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩})
108107opeq2d 3840 . . . . . . 7 (𝑟 = 𝑅 → ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩ = ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩)
10992, 100, 108tpeq123d 3735 . . . . . 6 (𝑟 = 𝑅 → {⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩} = {⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩})
110109csbeq2dv 3127 . . . . 5 (𝑟 = 𝑅(Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩} = (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩})
11191, 110eqtrd 2240 . . . 4 (𝑟 = 𝑅(Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩} = (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩})
112 df-iimas 13249 . . . 4 s = (𝑓 ∈ V, 𝑟 ∈ V ↦ (Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩})
11389, 111, 112ovmpog 6103 . . 3 ((𝐹 ∈ V ∧ 𝑅 ∈ V ∧ (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V) → (𝐹s 𝑅) = (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩})
1142, 4, 70, 113syl3anc 1250 . 2 ((𝐹𝑉𝑅𝑊) → (𝐹s 𝑅) = (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩})
115114, 70eqeltrd 2284 1 ((𝐹𝑉𝑅𝑊) → (𝐹s 𝑅) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1371   = wceq 1373  wcel 2178  wral 2486  Vcvv 2776  csb 3101  {csn 3643  {ctp 3645  cop 3646   ciun 3941  ran crn 4694   Fn wfn 5285  cfv 5290  (class class class)co 5967  cn 9071  ndxcnx 12944  Slot cslot 12946  Basecbs 12947  +gcplusg 13024  .rcmulr 13025  s cimas 13246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-tp 3651  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-mulr 13038  df-iimas 13249
This theorem is referenced by:  imasmulr  13256  qusval  13270  qusex  13272  xpsval  13299
  Copyright terms: Public domain W3C validator