ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasex GIF version

Theorem imasex 13108
Description: Existence of the image structure. (Contributed by Jim Kingdon, 13-Mar-2025.)
Assertion
Ref Expression
imasex ((𝐹𝑉𝑅𝑊) → (𝐹s 𝑅) ∈ V)

Proof of Theorem imasex
Dummy variables 𝑓 𝑝 𝑞 𝑟 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2782 . . . 4 (𝐹𝑉𝐹 ∈ V)
21adantr 276 . . 3 ((𝐹𝑉𝑅𝑊) → 𝐹 ∈ V)
3 elex 2782 . . . 4 (𝑅𝑊𝑅 ∈ V)
43adantl 277 . . 3 ((𝐹𝑉𝑅𝑊) → 𝑅 ∈ V)
5 basfn 12861 . . . . . 6 Base Fn V
6 funfvex 5592 . . . . . . 7 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
76funfni 5375 . . . . . 6 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
85, 3, 7sylancr 414 . . . . 5 (𝑅𝑊 → (Base‘𝑅) ∈ V)
98adantl 277 . . . 4 ((𝐹𝑉𝑅𝑊) → (Base‘𝑅) ∈ V)
10 basendxnn 12859 . . . . . . 7 (Base‘ndx) ∈ ℕ
11 rnexg 4942 . . . . . . . 8 (𝐹𝑉 → ran 𝐹 ∈ V)
1211adantr 276 . . . . . . 7 ((𝐹𝑉𝑅𝑊) → ran 𝐹 ∈ V)
13 opexg 4271 . . . . . . 7 (((Base‘ndx) ∈ ℕ ∧ ran 𝐹 ∈ V) → ⟨(Base‘ndx), ran 𝐹⟩ ∈ V)
1410, 12, 13sylancr 414 . . . . . 6 ((𝐹𝑉𝑅𝑊) → ⟨(Base‘ndx), ran 𝐹⟩ ∈ V)
15 plusgndxnn 12914 . . . . . . 7 (+g‘ndx) ∈ ℕ
16 vex 2774 . . . . . . . 8 𝑣 ∈ V
17 vex 2774 . . . . . . . . . . . . . . . 16 𝑝 ∈ V
1817a1i 9 . . . . . . . . . . . . . . 15 ((𝐹𝑉𝑅𝑊) → 𝑝 ∈ V)
19 fvexg 5594 . . . . . . . . . . . . . . 15 ((𝐹𝑉𝑝 ∈ V) → (𝐹𝑝) ∈ V)
2018, 19syldan 282 . . . . . . . . . . . . . 14 ((𝐹𝑉𝑅𝑊) → (𝐹𝑝) ∈ V)
21 vex 2774 . . . . . . . . . . . . . . . 16 𝑞 ∈ V
2221a1i 9 . . . . . . . . . . . . . . 15 ((𝐹𝑉𝑅𝑊) → 𝑞 ∈ V)
23 fvexg 5594 . . . . . . . . . . . . . . 15 ((𝐹𝑉𝑞 ∈ V) → (𝐹𝑞) ∈ V)
2422, 23syldan 282 . . . . . . . . . . . . . 14 ((𝐹𝑉𝑅𝑊) → (𝐹𝑞) ∈ V)
25 opexg 4271 . . . . . . . . . . . . . 14 (((𝐹𝑝) ∈ V ∧ (𝐹𝑞) ∈ V) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V)
2620, 24, 25syl2anc 411 . . . . . . . . . . . . 13 ((𝐹𝑉𝑅𝑊) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V)
27 plusgslid 12915 . . . . . . . . . . . . . . . . 17 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
2827slotex 12830 . . . . . . . . . . . . . . . 16 (𝑅𝑊 → (+g𝑅) ∈ V)
2928adantl 277 . . . . . . . . . . . . . . 15 ((𝐹𝑉𝑅𝑊) → (+g𝑅) ∈ V)
30 ovexg 5977 . . . . . . . . . . . . . . 15 ((𝑝 ∈ V ∧ (+g𝑅) ∈ V ∧ 𝑞 ∈ V) → (𝑝(+g𝑅)𝑞) ∈ V)
3118, 29, 22, 30syl3anc 1249 . . . . . . . . . . . . . 14 ((𝐹𝑉𝑅𝑊) → (𝑝(+g𝑅)𝑞) ∈ V)
32 fvexg 5594 . . . . . . . . . . . . . 14 ((𝐹𝑉 ∧ (𝑝(+g𝑅)𝑞) ∈ V) → (𝐹‘(𝑝(+g𝑅)𝑞)) ∈ V)
3331, 32syldan 282 . . . . . . . . . . . . 13 ((𝐹𝑉𝑅𝑊) → (𝐹‘(𝑝(+g𝑅)𝑞)) ∈ V)
34 opexg 4271 . . . . . . . . . . . . 13 ((⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V ∧ (𝐹‘(𝑝(+g𝑅)𝑞)) ∈ V) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩ ∈ V)
3526, 33, 34syl2anc 411 . . . . . . . . . . . 12 ((𝐹𝑉𝑅𝑊) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩ ∈ V)
36 snexg 4227 . . . . . . . . . . . 12 (⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩ ∈ V → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
3735, 36syl 14 . . . . . . . . . . 11 ((𝐹𝑉𝑅𝑊) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
3837ralrimivw 2579 . . . . . . . . . 10 ((𝐹𝑉𝑅𝑊) → ∀𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
39 iunexg 6203 . . . . . . . . . 10 ((𝑣 ∈ V ∧ ∀𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V) → 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
4016, 38, 39sylancr 414 . . . . . . . . 9 ((𝐹𝑉𝑅𝑊) → 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
4140ralrimivw 2579 . . . . . . . 8 ((𝐹𝑉𝑅𝑊) → ∀𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
42 iunexg 6203 . . . . . . . 8 ((𝑣 ∈ V ∧ ∀𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
4316, 41, 42sylancr 414 . . . . . . 7 ((𝐹𝑉𝑅𝑊) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
44 opexg 4271 . . . . . . 7 (((+g‘ndx) ∈ ℕ ∧ 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V) → ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩ ∈ V)
4515, 43, 44sylancr 414 . . . . . 6 ((𝐹𝑉𝑅𝑊) → ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩ ∈ V)
46 mulrslid 12935 . . . . . . . 8 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
4746simpri 113 . . . . . . 7 (.r‘ndx) ∈ ℕ
4846slotex 12830 . . . . . . . . . . . . . . . 16 (𝑅𝑊 → (.r𝑅) ∈ V)
4948adantl 277 . . . . . . . . . . . . . . 15 ((𝐹𝑉𝑅𝑊) → (.r𝑅) ∈ V)
50 ovexg 5977 . . . . . . . . . . . . . . 15 ((𝑝 ∈ V ∧ (.r𝑅) ∈ V ∧ 𝑞 ∈ V) → (𝑝(.r𝑅)𝑞) ∈ V)
5118, 49, 22, 50syl3anc 1249 . . . . . . . . . . . . . 14 ((𝐹𝑉𝑅𝑊) → (𝑝(.r𝑅)𝑞) ∈ V)
52 fvexg 5594 . . . . . . . . . . . . . 14 ((𝐹𝑉 ∧ (𝑝(.r𝑅)𝑞) ∈ V) → (𝐹‘(𝑝(.r𝑅)𝑞)) ∈ V)
5351, 52syldan 282 . . . . . . . . . . . . 13 ((𝐹𝑉𝑅𝑊) → (𝐹‘(𝑝(.r𝑅)𝑞)) ∈ V)
54 opexg 4271 . . . . . . . . . . . . 13 ((⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V ∧ (𝐹‘(𝑝(.r𝑅)𝑞)) ∈ V) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩ ∈ V)
5526, 53, 54syl2anc 411 . . . . . . . . . . . 12 ((𝐹𝑉𝑅𝑊) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩ ∈ V)
56 snexg 4227 . . . . . . . . . . . 12 (⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩ ∈ V → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
5755, 56syl 14 . . . . . . . . . . 11 ((𝐹𝑉𝑅𝑊) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
5857ralrimivw 2579 . . . . . . . . . 10 ((𝐹𝑉𝑅𝑊) → ∀𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
59 iunexg 6203 . . . . . . . . . 10 ((𝑣 ∈ V ∧ ∀𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V) → 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
6016, 58, 59sylancr 414 . . . . . . . . 9 ((𝐹𝑉𝑅𝑊) → 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
6160ralrimivw 2579 . . . . . . . 8 ((𝐹𝑉𝑅𝑊) → ∀𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
62 iunexg 6203 . . . . . . . 8 ((𝑣 ∈ V ∧ ∀𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
6316, 61, 62sylancr 414 . . . . . . 7 ((𝐹𝑉𝑅𝑊) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
64 opexg 4271 . . . . . . 7 (((.r‘ndx) ∈ ℕ ∧ 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V) → ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩ ∈ V)
6547, 63, 64sylancr 414 . . . . . 6 ((𝐹𝑉𝑅𝑊) → ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩ ∈ V)
66 tpexg 4490 . . . . . 6 ((⟨(Base‘ndx), ran 𝐹⟩ ∈ V ∧ ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩ ∈ V ∧ ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩ ∈ V) → {⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V)
6714, 45, 65, 66syl3anc 1249 . . . . 5 ((𝐹𝑉𝑅𝑊) → {⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V)
6867alrimiv 1896 . . . 4 ((𝐹𝑉𝑅𝑊) → ∀𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V)
69 csbexga 4171 . . . 4 (((Base‘𝑅) ∈ V ∧ ∀𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V) → (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V)
709, 68, 69syl2anc 411 . . 3 ((𝐹𝑉𝑅𝑊) → (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V)
71 rneq 4904 . . . . . . 7 (𝑓 = 𝐹 → ran 𝑓 = ran 𝐹)
7271opeq2d 3825 . . . . . 6 (𝑓 = 𝐹 → ⟨(Base‘ndx), ran 𝑓⟩ = ⟨(Base‘ndx), ran 𝐹⟩)
73 fveq1 5574 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓𝑝) = (𝐹𝑝))
74 fveq1 5574 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓𝑞) = (𝐹𝑞))
7573, 74opeq12d 3826 . . . . . . . . . . 11 (𝑓 = 𝐹 → ⟨(𝑓𝑝), (𝑓𝑞)⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩)
76 fveq1 5574 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓‘(𝑝(+g𝑟)𝑞)) = (𝐹‘(𝑝(+g𝑟)𝑞)))
7775, 76opeq12d 3826 . . . . . . . . . 10 (𝑓 = 𝐹 → ⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩)
7877sneqd 3645 . . . . . . . . 9 (𝑓 = 𝐹 → {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩})
7978iuneq2d 3951 . . . . . . . 8 (𝑓 = 𝐹 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩})
8079iuneq2d 3951 . . . . . . 7 (𝑓 = 𝐹 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩})
8180opeq2d 3825 . . . . . 6 (𝑓 = 𝐹 → ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩ = ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩)
82 fveq1 5574 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓‘(𝑝(.r𝑟)𝑞)) = (𝐹‘(𝑝(.r𝑟)𝑞)))
8375, 82opeq12d 3826 . . . . . . . . . 10 (𝑓 = 𝐹 → ⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩)
8483sneqd 3645 . . . . . . . . 9 (𝑓 = 𝐹 → {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩})
8584iuneq2d 3951 . . . . . . . 8 (𝑓 = 𝐹 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩})
8685iuneq2d 3951 . . . . . . 7 (𝑓 = 𝐹 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩})
8786opeq2d 3825 . . . . . 6 (𝑓 = 𝐹 → ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩ = ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩)
8872, 81, 87tpeq123d 3724 . . . . 5 (𝑓 = 𝐹 → {⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩} = {⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩})
8988csbeq2dv 3118 . . . 4 (𝑓 = 𝐹(Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩} = (Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩})
90 fveq2 5575 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
9190csbeq1d 3099 . . . . 5 (𝑟 = 𝑅(Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩} = (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩})
92 eqidd 2205 . . . . . . 7 (𝑟 = 𝑅 → ⟨(Base‘ndx), ran 𝐹⟩ = ⟨(Base‘ndx), ran 𝐹⟩)
93 fveq2 5575 . . . . . . . . . . . . . 14 (𝑟 = 𝑅 → (+g𝑟) = (+g𝑅))
9493oveqd 5960 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (𝑝(+g𝑟)𝑞) = (𝑝(+g𝑅)𝑞))
9594fveq2d 5579 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (𝐹‘(𝑝(+g𝑟)𝑞)) = (𝐹‘(𝑝(+g𝑅)𝑞)))
9695opeq2d 3825 . . . . . . . . . . 11 (𝑟 = 𝑅 → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩)
9796sneqd 3645 . . . . . . . . . 10 (𝑟 = 𝑅 → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩})
9897iuneq2d 3951 . . . . . . . . 9 (𝑟 = 𝑅 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩} = 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩})
9998iuneq2d 3951 . . . . . . . 8 (𝑟 = 𝑅 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩} = 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩})
10099opeq2d 3825 . . . . . . 7 (𝑟 = 𝑅 → ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩ = ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩)
101 fveq2 5575 . . . . . . . . . . . . . 14 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
102101oveqd 5960 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (𝑝(.r𝑟)𝑞) = (𝑝(.r𝑅)𝑞))
103102fveq2d 5579 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (𝐹‘(𝑝(.r𝑟)𝑞)) = (𝐹‘(𝑝(.r𝑅)𝑞)))
104103opeq2d 3825 . . . . . . . . . . 11 (𝑟 = 𝑅 → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩)
105104sneqd 3645 . . . . . . . . . 10 (𝑟 = 𝑅 → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩})
106105iuneq2d 3951 . . . . . . . . 9 (𝑟 = 𝑅 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩} = 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩})
107106iuneq2d 3951 . . . . . . . 8 (𝑟 = 𝑅 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩} = 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩})
108107opeq2d 3825 . . . . . . 7 (𝑟 = 𝑅 → ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩ = ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩)
10992, 100, 108tpeq123d 3724 . . . . . 6 (𝑟 = 𝑅 → {⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩} = {⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩})
110109csbeq2dv 3118 . . . . 5 (𝑟 = 𝑅(Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩} = (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩})
11191, 110eqtrd 2237 . . . 4 (𝑟 = 𝑅(Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩} = (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩})
112 df-iimas 13105 . . . 4 s = (𝑓 ∈ V, 𝑟 ∈ V ↦ (Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩})
11389, 111, 112ovmpog 6079 . . 3 ((𝐹 ∈ V ∧ 𝑅 ∈ V ∧ (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V) → (𝐹s 𝑅) = (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩})
1142, 4, 70, 113syl3anc 1249 . 2 ((𝐹𝑉𝑅𝑊) → (𝐹s 𝑅) = (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩})
115114, 70eqeltrd 2281 1 ((𝐹𝑉𝑅𝑊) → (𝐹s 𝑅) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1370   = wceq 1372  wcel 2175  wral 2483  Vcvv 2771  csb 3092  {csn 3632  {ctp 3634  cop 3635   ciun 3926  ran crn 4675   Fn wfn 5265  cfv 5270  (class class class)co 5943  cn 9035  ndxcnx 12800  Slot cslot 12802  Basecbs 12803  +gcplusg 12880  .rcmulr 12881  s cimas 13102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-tp 3640  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12806  df-slot 12807  df-base 12809  df-plusg 12893  df-mulr 12894  df-iimas 13105
This theorem is referenced by:  imasmulr  13112  qusval  13126  qusex  13128  xpsval  13155
  Copyright terms: Public domain W3C validator