Step | Hyp | Ref
| Expression |
1 | | elex 2750 |
. . . 4
⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) |
2 | 1 | adantr 276 |
. . 3
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝐹 ∈ V) |
3 | | elex 2750 |
. . . 4
⊢ (𝑅 ∈ 𝑊 → 𝑅 ∈ V) |
4 | 3 | adantl 277 |
. . 3
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑅 ∈ V) |
5 | | basfn 12522 |
. . . . . 6
⊢ Base Fn
V |
6 | | funfvex 5534 |
. . . . . . 7
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) |
7 | 6 | funfni 5318 |
. . . . . 6
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) |
8 | 5, 3, 7 | sylancr 414 |
. . . . 5
⊢ (𝑅 ∈ 𝑊 → (Base‘𝑅) ∈ V) |
9 | 8 | adantl 277 |
. . . 4
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (Base‘𝑅) ∈ V) |
10 | | basendxnn 12520 |
. . . . . . 7
⊢
(Base‘ndx) ∈ ℕ |
11 | | rnexg 4894 |
. . . . . . . 8
⊢ (𝐹 ∈ 𝑉 → ran 𝐹 ∈ V) |
12 | 11 | adantr 276 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ran 𝐹 ∈ V) |
13 | | opexg 4230 |
. . . . . . 7
⊢
(((Base‘ndx) ∈ ℕ ∧ ran 𝐹 ∈ V) → 〈(Base‘ndx),
ran 𝐹〉 ∈
V) |
14 | 10, 12, 13 | sylancr 414 |
. . . . . 6
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 〈(Base‘ndx), ran 𝐹〉 ∈
V) |
15 | | plusgndxnn 12572 |
. . . . . . 7
⊢
(+g‘ndx) ∈ ℕ |
16 | | vex 2742 |
. . . . . . . 8
⊢ 𝑣 ∈ V |
17 | | vex 2742 |
. . . . . . . . . . . . . . . 16
⊢ 𝑝 ∈ V |
18 | 17 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑝 ∈ V) |
19 | | fvexg 5536 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑝 ∈ V) → (𝐹‘𝑝) ∈ V) |
20 | 18, 19 | syldan 282 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝐹‘𝑝) ∈ V) |
21 | | vex 2742 |
. . . . . . . . . . . . . . . 16
⊢ 𝑞 ∈ V |
22 | 21 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑞 ∈ V) |
23 | | fvexg 5536 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑞 ∈ V) → (𝐹‘𝑞) ∈ V) |
24 | 22, 23 | syldan 282 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝐹‘𝑞) ∈ V) |
25 | | opexg 4230 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑝) ∈ V ∧ (𝐹‘𝑞) ∈ V) → 〈(𝐹‘𝑝), (𝐹‘𝑞)〉 ∈ V) |
26 | 20, 24, 25 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 〈(𝐹‘𝑝), (𝐹‘𝑞)〉 ∈ V) |
27 | | plusgslid 12573 |
. . . . . . . . . . . . . . . . 17
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) |
28 | 27 | slotex 12491 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ 𝑊 → (+g‘𝑅) ∈ V) |
29 | 28 | adantl 277 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (+g‘𝑅) ∈ V) |
30 | | ovexg 5911 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 ∈ V ∧
(+g‘𝑅)
∈ V ∧ 𝑞 ∈ V)
→ (𝑝(+g‘𝑅)𝑞) ∈ V) |
31 | 18, 29, 22, 30 | syl3anc 1238 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑝(+g‘𝑅)𝑞) ∈ V) |
32 | | fvexg 5536 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ 𝑉 ∧ (𝑝(+g‘𝑅)𝑞) ∈ V) → (𝐹‘(𝑝(+g‘𝑅)𝑞)) ∈ V) |
33 | 31, 32 | syldan 282 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝐹‘(𝑝(+g‘𝑅)𝑞)) ∈ V) |
34 | | opexg 4230 |
. . . . . . . . . . . . 13
⊢
((〈(𝐹‘𝑝), (𝐹‘𝑞)〉 ∈ V ∧ (𝐹‘(𝑝(+g‘𝑅)𝑞)) ∈ V) → 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉 ∈ V) |
35 | 26, 33, 34 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉 ∈ V) |
36 | | snexg 4186 |
. . . . . . . . . . . 12
⊢
(〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉 ∈ V → {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} ∈ V) |
37 | 35, 36 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} ∈ V) |
38 | 37 | ralrimivw 2551 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ∀𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} ∈ V) |
39 | | iunexg 6122 |
. . . . . . . . . 10
⊢ ((𝑣 ∈ V ∧ ∀𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} ∈ V) → ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} ∈ V) |
40 | 16, 38, 39 | sylancr 414 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ∪
𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} ∈ V) |
41 | 40 | ralrimivw 2551 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ∀𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} ∈ V) |
42 | | iunexg 6122 |
. . . . . . . 8
⊢ ((𝑣 ∈ V ∧ ∀𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} ∈ V) → ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} ∈ V) |
43 | 16, 41, 42 | sylancr 414 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ∪
𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} ∈ V) |
44 | | opexg 4230 |
. . . . . . 7
⊢
(((+g‘ndx) ∈ ℕ ∧ ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉} ∈ V) →
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉 ∈ V) |
45 | 15, 43, 44 | sylancr 414 |
. . . . . 6
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 〈(+g‘ndx),
∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉 ∈ V) |
46 | | mulrslid 12592 |
. . . . . . . 8
⊢
(.r = Slot (.r‘ndx) ∧
(.r‘ndx) ∈ ℕ) |
47 | 46 | simpri 113 |
. . . . . . 7
⊢
(.r‘ndx) ∈ ℕ |
48 | 46 | slotex 12491 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ 𝑊 → (.r‘𝑅) ∈ V) |
49 | 48 | adantl 277 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (.r‘𝑅) ∈ V) |
50 | | ovexg 5911 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 ∈ V ∧
(.r‘𝑅)
∈ V ∧ 𝑞 ∈ V)
→ (𝑝(.r‘𝑅)𝑞) ∈ V) |
51 | 18, 49, 22, 50 | syl3anc 1238 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑝(.r‘𝑅)𝑞) ∈ V) |
52 | | fvexg 5536 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ 𝑉 ∧ (𝑝(.r‘𝑅)𝑞) ∈ V) → (𝐹‘(𝑝(.r‘𝑅)𝑞)) ∈ V) |
53 | 51, 52 | syldan 282 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝐹‘(𝑝(.r‘𝑅)𝑞)) ∈ V) |
54 | | opexg 4230 |
. . . . . . . . . . . . 13
⊢
((〈(𝐹‘𝑝), (𝐹‘𝑞)〉 ∈ V ∧ (𝐹‘(𝑝(.r‘𝑅)𝑞)) ∈ V) → 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉 ∈ V) |
55 | 26, 53, 54 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉 ∈ V) |
56 | | snexg 4186 |
. . . . . . . . . . . 12
⊢
(〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉 ∈ V → {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉} ∈ V) |
57 | 55, 56 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉} ∈ V) |
58 | 57 | ralrimivw 2551 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ∀𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉} ∈ V) |
59 | | iunexg 6122 |
. . . . . . . . . 10
⊢ ((𝑣 ∈ V ∧ ∀𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉} ∈ V) → ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉} ∈ V) |
60 | 16, 58, 59 | sylancr 414 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ∪
𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉} ∈ V) |
61 | 60 | ralrimivw 2551 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ∀𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉} ∈ V) |
62 | | iunexg 6122 |
. . . . . . . 8
⊢ ((𝑣 ∈ V ∧ ∀𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉} ∈ V) → ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉} ∈ V) |
63 | 16, 61, 62 | sylancr 414 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ∪
𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉} ∈ V) |
64 | | opexg 4230 |
. . . . . . 7
⊢
(((.r‘ndx) ∈ ℕ ∧ ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉} ∈ V) →
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}〉 ∈ V) |
65 | 47, 63, 64 | sylancr 414 |
. . . . . 6
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 〈(.r‘ndx),
∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}〉 ∈ V) |
66 | | tpexg 4446 |
. . . . . 6
⊢
((〈(Base‘ndx), ran 𝐹〉 ∈ V ∧
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉 ∈ V ∧
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}〉 ∈ V) →
{〈(Base‘ndx), ran 𝐹〉, 〈(+g‘ndx),
∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}〉} ∈ V) |
67 | 14, 45, 65, 66 | syl3anc 1238 |
. . . . 5
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → {〈(Base‘ndx), ran 𝐹〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}〉} ∈ V) |
68 | 67 | alrimiv 1874 |
. . . 4
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ∀𝑣{〈(Base‘ndx), ran 𝐹〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}〉} ∈ V) |
69 | | csbexga 4133 |
. . . 4
⊢
(((Base‘𝑅)
∈ V ∧ ∀𝑣{〈(Base‘ndx), ran 𝐹〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}〉} ∈ V) →
⦋(Base‘𝑅) / 𝑣⦌{〈(Base‘ndx), ran
𝐹〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}〉} ∈ V) |
70 | 9, 68, 69 | syl2anc 411 |
. . 3
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ⦋(Base‘𝑅) / 𝑣⦌{〈(Base‘ndx), ran
𝐹〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}〉} ∈ V) |
71 | | rneq 4856 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → ran 𝑓 = ran 𝐹) |
72 | 71 | opeq2d 3787 |
. . . . . 6
⊢ (𝑓 = 𝐹 → 〈(Base‘ndx), ran 𝑓〉 = 〈(Base‘ndx),
ran 𝐹〉) |
73 | | fveq1 5516 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐹 → (𝑓‘𝑝) = (𝐹‘𝑝)) |
74 | | fveq1 5516 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐹 → (𝑓‘𝑞) = (𝐹‘𝑞)) |
75 | 73, 74 | opeq12d 3788 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → 〈(𝑓‘𝑝), (𝑓‘𝑞)〉 = 〈(𝐹‘𝑝), (𝐹‘𝑞)〉) |
76 | | fveq1 5516 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → (𝑓‘(𝑝(+g‘𝑟)𝑞)) = (𝐹‘(𝑝(+g‘𝑟)𝑞))) |
77 | 75, 76 | opeq12d 3788 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → 〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉 = 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑟)𝑞))〉) |
78 | 77 | sneqd 3607 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉} = {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑟)𝑞))〉}) |
79 | 78 | iuneq2d 3913 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → ∪
𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉} = ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑟)𝑞))〉}) |
80 | 79 | iuneq2d 3913 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → ∪
𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉} = ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑟)𝑞))〉}) |
81 | 80 | opeq2d 3787 |
. . . . . 6
⊢ (𝑓 = 𝐹 → 〈(+g‘ndx),
∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉 =
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑟)𝑞))〉}〉) |
82 | | fveq1 5516 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → (𝑓‘(𝑝(.r‘𝑟)𝑞)) = (𝐹‘(𝑝(.r‘𝑟)𝑞))) |
83 | 75, 82 | opeq12d 3788 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → 〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉 = 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑟)𝑞))〉) |
84 | 83 | sneqd 3607 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉} = {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑟)𝑞))〉}) |
85 | 84 | iuneq2d 3913 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → ∪
𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉} = ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑟)𝑞))〉}) |
86 | 85 | iuneq2d 3913 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → ∪
𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉} = ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑟)𝑞))〉}) |
87 | 86 | opeq2d 3787 |
. . . . . 6
⊢ (𝑓 = 𝐹 → 〈(.r‘ndx),
∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉 =
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑟)𝑞))〉}〉) |
88 | 72, 81, 87 | tpeq123d 3686 |
. . . . 5
⊢ (𝑓 = 𝐹 → {〈(Base‘ndx), ran 𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} = {〈(Base‘ndx),
ran 𝐹〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑟)𝑞))〉}〉}) |
89 | 88 | csbeq2dv 3085 |
. . . 4
⊢ (𝑓 = 𝐹 → ⦋(Base‘𝑟) / 𝑣⦌{〈(Base‘ndx), ran
𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} =
⦋(Base‘𝑟) / 𝑣⦌{〈(Base‘ndx), ran
𝐹〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑟)𝑞))〉}〉}) |
90 | | fveq2 5517 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) |
91 | 90 | csbeq1d 3066 |
. . . . 5
⊢ (𝑟 = 𝑅 → ⦋(Base‘𝑟) / 𝑣⦌{〈(Base‘ndx), ran
𝐹〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑟)𝑞))〉}〉} =
⦋(Base‘𝑅) / 𝑣⦌{〈(Base‘ndx), ran
𝐹〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑟)𝑞))〉}〉}) |
92 | | eqidd 2178 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → 〈(Base‘ndx), ran 𝐹〉 = 〈(Base‘ndx),
ran 𝐹〉) |
93 | | fveq2 5517 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = 𝑅 → (+g‘𝑟) = (+g‘𝑅)) |
94 | 93 | oveqd 5894 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑅 → (𝑝(+g‘𝑟)𝑞) = (𝑝(+g‘𝑅)𝑞)) |
95 | 94 | fveq2d 5521 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑅 → (𝐹‘(𝑝(+g‘𝑟)𝑞)) = (𝐹‘(𝑝(+g‘𝑅)𝑞))) |
96 | 95 | opeq2d 3787 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑟)𝑞))〉 = 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉) |
97 | 96 | sneqd 3607 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑟)𝑞))〉} = {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}) |
98 | 97 | iuneq2d 3913 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → ∪
𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑟)𝑞))〉} = ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}) |
99 | 98 | iuneq2d 3913 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → ∪
𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑟)𝑞))〉} = ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}) |
100 | 99 | opeq2d 3787 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → 〈(+g‘ndx),
∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑟)𝑞))〉}〉 =
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉) |
101 | | fveq2 5517 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = 𝑅 → (.r‘𝑟) = (.r‘𝑅)) |
102 | 101 | oveqd 5894 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑅 → (𝑝(.r‘𝑟)𝑞) = (𝑝(.r‘𝑅)𝑞)) |
103 | 102 | fveq2d 5521 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑅 → (𝐹‘(𝑝(.r‘𝑟)𝑞)) = (𝐹‘(𝑝(.r‘𝑅)𝑞))) |
104 | 103 | opeq2d 3787 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑟)𝑞))〉 = 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉) |
105 | 104 | sneqd 3607 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑟)𝑞))〉} = {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}) |
106 | 105 | iuneq2d 3913 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → ∪
𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑟)𝑞))〉} = ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}) |
107 | 106 | iuneq2d 3913 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → ∪
𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑟)𝑞))〉} = ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}) |
108 | 107 | opeq2d 3787 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → 〈(.r‘ndx),
∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑟)𝑞))〉}〉 =
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}〉) |
109 | 92, 100, 108 | tpeq123d 3686 |
. . . . . 6
⊢ (𝑟 = 𝑅 → {〈(Base‘ndx), ran 𝐹〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑟)𝑞))〉}〉} = {〈(Base‘ndx),
ran 𝐹〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}〉}) |
110 | 109 | csbeq2dv 3085 |
. . . . 5
⊢ (𝑟 = 𝑅 → ⦋(Base‘𝑅) / 𝑣⦌{〈(Base‘ndx), ran
𝐹〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑟)𝑞))〉}〉} =
⦋(Base‘𝑅) / 𝑣⦌{〈(Base‘ndx), ran
𝐹〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}〉}) |
111 | 91, 110 | eqtrd 2210 |
. . . 4
⊢ (𝑟 = 𝑅 → ⦋(Base‘𝑟) / 𝑣⦌{〈(Base‘ndx), ran
𝐹〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑟)𝑞))〉}〉} =
⦋(Base‘𝑅) / 𝑣⦌{〈(Base‘ndx), ran
𝐹〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}〉}) |
112 | | df-iimas 12728 |
. . . 4
⊢
“s = (𝑓 ∈ V, 𝑟 ∈ V ↦
⦋(Base‘𝑟) / 𝑣⦌{〈(Base‘ndx), ran
𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉}) |
113 | 89, 111, 112 | ovmpog 6011 |
. . 3
⊢ ((𝐹 ∈ V ∧ 𝑅 ∈ V ∧
⦋(Base‘𝑅) / 𝑣⦌{〈(Base‘ndx), ran
𝐹〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}〉} ∈ V) → (𝐹 “s
𝑅) =
⦋(Base‘𝑅) / 𝑣⦌{〈(Base‘ndx), ran
𝐹〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}〉}) |
114 | 2, 4, 70, 113 | syl3anc 1238 |
. 2
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝐹 “s 𝑅) =
⦋(Base‘𝑅) / 𝑣⦌{〈(Base‘ndx), ran
𝐹〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}〉}) |
115 | 114, 70 | eqeltrd 2254 |
1
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝐹 “s 𝑅) ∈ V) |