ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasex GIF version

Theorem imasex 12888
Description: Existence of the image structure. (Contributed by Jim Kingdon, 13-Mar-2025.)
Assertion
Ref Expression
imasex ((𝐹𝑉𝑅𝑊) → (𝐹s 𝑅) ∈ V)

Proof of Theorem imasex
Dummy variables 𝑓 𝑝 𝑞 𝑟 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2771 . . . 4 (𝐹𝑉𝐹 ∈ V)
21adantr 276 . . 3 ((𝐹𝑉𝑅𝑊) → 𝐹 ∈ V)
3 elex 2771 . . . 4 (𝑅𝑊𝑅 ∈ V)
43adantl 277 . . 3 ((𝐹𝑉𝑅𝑊) → 𝑅 ∈ V)
5 basfn 12676 . . . . . 6 Base Fn V
6 funfvex 5571 . . . . . . 7 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
76funfni 5354 . . . . . 6 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
85, 3, 7sylancr 414 . . . . 5 (𝑅𝑊 → (Base‘𝑅) ∈ V)
98adantl 277 . . . 4 ((𝐹𝑉𝑅𝑊) → (Base‘𝑅) ∈ V)
10 basendxnn 12674 . . . . . . 7 (Base‘ndx) ∈ ℕ
11 rnexg 4927 . . . . . . . 8 (𝐹𝑉 → ran 𝐹 ∈ V)
1211adantr 276 . . . . . . 7 ((𝐹𝑉𝑅𝑊) → ran 𝐹 ∈ V)
13 opexg 4257 . . . . . . 7 (((Base‘ndx) ∈ ℕ ∧ ran 𝐹 ∈ V) → ⟨(Base‘ndx), ran 𝐹⟩ ∈ V)
1410, 12, 13sylancr 414 . . . . . 6 ((𝐹𝑉𝑅𝑊) → ⟨(Base‘ndx), ran 𝐹⟩ ∈ V)
15 plusgndxnn 12729 . . . . . . 7 (+g‘ndx) ∈ ℕ
16 vex 2763 . . . . . . . 8 𝑣 ∈ V
17 vex 2763 . . . . . . . . . . . . . . . 16 𝑝 ∈ V
1817a1i 9 . . . . . . . . . . . . . . 15 ((𝐹𝑉𝑅𝑊) → 𝑝 ∈ V)
19 fvexg 5573 . . . . . . . . . . . . . . 15 ((𝐹𝑉𝑝 ∈ V) → (𝐹𝑝) ∈ V)
2018, 19syldan 282 . . . . . . . . . . . . . 14 ((𝐹𝑉𝑅𝑊) → (𝐹𝑝) ∈ V)
21 vex 2763 . . . . . . . . . . . . . . . 16 𝑞 ∈ V
2221a1i 9 . . . . . . . . . . . . . . 15 ((𝐹𝑉𝑅𝑊) → 𝑞 ∈ V)
23 fvexg 5573 . . . . . . . . . . . . . . 15 ((𝐹𝑉𝑞 ∈ V) → (𝐹𝑞) ∈ V)
2422, 23syldan 282 . . . . . . . . . . . . . 14 ((𝐹𝑉𝑅𝑊) → (𝐹𝑞) ∈ V)
25 opexg 4257 . . . . . . . . . . . . . 14 (((𝐹𝑝) ∈ V ∧ (𝐹𝑞) ∈ V) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V)
2620, 24, 25syl2anc 411 . . . . . . . . . . . . 13 ((𝐹𝑉𝑅𝑊) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V)
27 plusgslid 12730 . . . . . . . . . . . . . . . . 17 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
2827slotex 12645 . . . . . . . . . . . . . . . 16 (𝑅𝑊 → (+g𝑅) ∈ V)
2928adantl 277 . . . . . . . . . . . . . . 15 ((𝐹𝑉𝑅𝑊) → (+g𝑅) ∈ V)
30 ovexg 5952 . . . . . . . . . . . . . . 15 ((𝑝 ∈ V ∧ (+g𝑅) ∈ V ∧ 𝑞 ∈ V) → (𝑝(+g𝑅)𝑞) ∈ V)
3118, 29, 22, 30syl3anc 1249 . . . . . . . . . . . . . 14 ((𝐹𝑉𝑅𝑊) → (𝑝(+g𝑅)𝑞) ∈ V)
32 fvexg 5573 . . . . . . . . . . . . . 14 ((𝐹𝑉 ∧ (𝑝(+g𝑅)𝑞) ∈ V) → (𝐹‘(𝑝(+g𝑅)𝑞)) ∈ V)
3331, 32syldan 282 . . . . . . . . . . . . 13 ((𝐹𝑉𝑅𝑊) → (𝐹‘(𝑝(+g𝑅)𝑞)) ∈ V)
34 opexg 4257 . . . . . . . . . . . . 13 ((⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V ∧ (𝐹‘(𝑝(+g𝑅)𝑞)) ∈ V) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩ ∈ V)
3526, 33, 34syl2anc 411 . . . . . . . . . . . 12 ((𝐹𝑉𝑅𝑊) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩ ∈ V)
36 snexg 4213 . . . . . . . . . . . 12 (⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩ ∈ V → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
3735, 36syl 14 . . . . . . . . . . 11 ((𝐹𝑉𝑅𝑊) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
3837ralrimivw 2568 . . . . . . . . . 10 ((𝐹𝑉𝑅𝑊) → ∀𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
39 iunexg 6171 . . . . . . . . . 10 ((𝑣 ∈ V ∧ ∀𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V) → 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
4016, 38, 39sylancr 414 . . . . . . . . 9 ((𝐹𝑉𝑅𝑊) → 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
4140ralrimivw 2568 . . . . . . . 8 ((𝐹𝑉𝑅𝑊) → ∀𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
42 iunexg 6171 . . . . . . . 8 ((𝑣 ∈ V ∧ ∀𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
4316, 41, 42sylancr 414 . . . . . . 7 ((𝐹𝑉𝑅𝑊) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V)
44 opexg 4257 . . . . . . 7 (((+g‘ndx) ∈ ℕ ∧ 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩} ∈ V) → ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩ ∈ V)
4515, 43, 44sylancr 414 . . . . . 6 ((𝐹𝑉𝑅𝑊) → ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩ ∈ V)
46 mulrslid 12749 . . . . . . . 8 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
4746simpri 113 . . . . . . 7 (.r‘ndx) ∈ ℕ
4846slotex 12645 . . . . . . . . . . . . . . . 16 (𝑅𝑊 → (.r𝑅) ∈ V)
4948adantl 277 . . . . . . . . . . . . . . 15 ((𝐹𝑉𝑅𝑊) → (.r𝑅) ∈ V)
50 ovexg 5952 . . . . . . . . . . . . . . 15 ((𝑝 ∈ V ∧ (.r𝑅) ∈ V ∧ 𝑞 ∈ V) → (𝑝(.r𝑅)𝑞) ∈ V)
5118, 49, 22, 50syl3anc 1249 . . . . . . . . . . . . . 14 ((𝐹𝑉𝑅𝑊) → (𝑝(.r𝑅)𝑞) ∈ V)
52 fvexg 5573 . . . . . . . . . . . . . 14 ((𝐹𝑉 ∧ (𝑝(.r𝑅)𝑞) ∈ V) → (𝐹‘(𝑝(.r𝑅)𝑞)) ∈ V)
5351, 52syldan 282 . . . . . . . . . . . . 13 ((𝐹𝑉𝑅𝑊) → (𝐹‘(𝑝(.r𝑅)𝑞)) ∈ V)
54 opexg 4257 . . . . . . . . . . . . 13 ((⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V ∧ (𝐹‘(𝑝(.r𝑅)𝑞)) ∈ V) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩ ∈ V)
5526, 53, 54syl2anc 411 . . . . . . . . . . . 12 ((𝐹𝑉𝑅𝑊) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩ ∈ V)
56 snexg 4213 . . . . . . . . . . . 12 (⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩ ∈ V → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
5755, 56syl 14 . . . . . . . . . . 11 ((𝐹𝑉𝑅𝑊) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
5857ralrimivw 2568 . . . . . . . . . 10 ((𝐹𝑉𝑅𝑊) → ∀𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
59 iunexg 6171 . . . . . . . . . 10 ((𝑣 ∈ V ∧ ∀𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V) → 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
6016, 58, 59sylancr 414 . . . . . . . . 9 ((𝐹𝑉𝑅𝑊) → 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
6160ralrimivw 2568 . . . . . . . 8 ((𝐹𝑉𝑅𝑊) → ∀𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
62 iunexg 6171 . . . . . . . 8 ((𝑣 ∈ V ∧ ∀𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
6316, 61, 62sylancr 414 . . . . . . 7 ((𝐹𝑉𝑅𝑊) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V)
64 opexg 4257 . . . . . . 7 (((.r‘ndx) ∈ ℕ ∧ 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩} ∈ V) → ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩ ∈ V)
6547, 63, 64sylancr 414 . . . . . 6 ((𝐹𝑉𝑅𝑊) → ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩ ∈ V)
66 tpexg 4475 . . . . . 6 ((⟨(Base‘ndx), ran 𝐹⟩ ∈ V ∧ ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩ ∈ V ∧ ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩ ∈ V) → {⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V)
6714, 45, 65, 66syl3anc 1249 . . . . 5 ((𝐹𝑉𝑅𝑊) → {⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V)
6867alrimiv 1885 . . . 4 ((𝐹𝑉𝑅𝑊) → ∀𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V)
69 csbexga 4157 . . . 4 (((Base‘𝑅) ∈ V ∧ ∀𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V) → (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V)
709, 68, 69syl2anc 411 . . 3 ((𝐹𝑉𝑅𝑊) → (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V)
71 rneq 4889 . . . . . . 7 (𝑓 = 𝐹 → ran 𝑓 = ran 𝐹)
7271opeq2d 3811 . . . . . 6 (𝑓 = 𝐹 → ⟨(Base‘ndx), ran 𝑓⟩ = ⟨(Base‘ndx), ran 𝐹⟩)
73 fveq1 5553 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓𝑝) = (𝐹𝑝))
74 fveq1 5553 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓𝑞) = (𝐹𝑞))
7573, 74opeq12d 3812 . . . . . . . . . . 11 (𝑓 = 𝐹 → ⟨(𝑓𝑝), (𝑓𝑞)⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩)
76 fveq1 5553 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓‘(𝑝(+g𝑟)𝑞)) = (𝐹‘(𝑝(+g𝑟)𝑞)))
7775, 76opeq12d 3812 . . . . . . . . . 10 (𝑓 = 𝐹 → ⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩)
7877sneqd 3631 . . . . . . . . 9 (𝑓 = 𝐹 → {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩})
7978iuneq2d 3937 . . . . . . . 8 (𝑓 = 𝐹 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩})
8079iuneq2d 3937 . . . . . . 7 (𝑓 = 𝐹 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩})
8180opeq2d 3811 . . . . . 6 (𝑓 = 𝐹 → ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩ = ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩)
82 fveq1 5553 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓‘(𝑝(.r𝑟)𝑞)) = (𝐹‘(𝑝(.r𝑟)𝑞)))
8375, 82opeq12d 3812 . . . . . . . . . 10 (𝑓 = 𝐹 → ⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩)
8483sneqd 3631 . . . . . . . . 9 (𝑓 = 𝐹 → {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩})
8584iuneq2d 3937 . . . . . . . 8 (𝑓 = 𝐹 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩})
8685iuneq2d 3937 . . . . . . 7 (𝑓 = 𝐹 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩})
8786opeq2d 3811 . . . . . 6 (𝑓 = 𝐹 → ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩ = ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩)
8872, 81, 87tpeq123d 3710 . . . . 5 (𝑓 = 𝐹 → {⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩} = {⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩})
8988csbeq2dv 3106 . . . 4 (𝑓 = 𝐹(Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩} = (Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩})
90 fveq2 5554 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
9190csbeq1d 3087 . . . . 5 (𝑟 = 𝑅(Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩} = (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩})
92 eqidd 2194 . . . . . . 7 (𝑟 = 𝑅 → ⟨(Base‘ndx), ran 𝐹⟩ = ⟨(Base‘ndx), ran 𝐹⟩)
93 fveq2 5554 . . . . . . . . . . . . . 14 (𝑟 = 𝑅 → (+g𝑟) = (+g𝑅))
9493oveqd 5935 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (𝑝(+g𝑟)𝑞) = (𝑝(+g𝑅)𝑞))
9594fveq2d 5558 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (𝐹‘(𝑝(+g𝑟)𝑞)) = (𝐹‘(𝑝(+g𝑅)𝑞)))
9695opeq2d 3811 . . . . . . . . . . 11 (𝑟 = 𝑅 → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩)
9796sneqd 3631 . . . . . . . . . 10 (𝑟 = 𝑅 → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩})
9897iuneq2d 3937 . . . . . . . . 9 (𝑟 = 𝑅 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩} = 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩})
9998iuneq2d 3937 . . . . . . . 8 (𝑟 = 𝑅 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩} = 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩})
10099opeq2d 3811 . . . . . . 7 (𝑟 = 𝑅 → ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩ = ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩)
101 fveq2 5554 . . . . . . . . . . . . . 14 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
102101oveqd 5935 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (𝑝(.r𝑟)𝑞) = (𝑝(.r𝑅)𝑞))
103102fveq2d 5558 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (𝐹‘(𝑝(.r𝑟)𝑞)) = (𝐹‘(𝑝(.r𝑅)𝑞)))
104103opeq2d 3811 . . . . . . . . . . 11 (𝑟 = 𝑅 → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩)
105104sneqd 3631 . . . . . . . . . 10 (𝑟 = 𝑅 → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩})
106105iuneq2d 3937 . . . . . . . . 9 (𝑟 = 𝑅 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩} = 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩})
107106iuneq2d 3937 . . . . . . . 8 (𝑟 = 𝑅 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩} = 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩})
108107opeq2d 3811 . . . . . . 7 (𝑟 = 𝑅 → ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩ = ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩)
10992, 100, 108tpeq123d 3710 . . . . . 6 (𝑟 = 𝑅 → {⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩} = {⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩})
110109csbeq2dv 3106 . . . . 5 (𝑟 = 𝑅(Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩} = (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩})
11191, 110eqtrd 2226 . . . 4 (𝑟 = 𝑅(Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑟)𝑞))⟩}⟩} = (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩})
112 df-iimas 12885 . . . 4 s = (𝑓 ∈ V, 𝑟 ∈ V ↦ (Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩})
11389, 111, 112ovmpog 6053 . . 3 ((𝐹 ∈ V ∧ 𝑅 ∈ V ∧ (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩} ∈ V) → (𝐹s 𝑅) = (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩})
1142, 4, 70, 113syl3anc 1249 . 2 ((𝐹𝑉𝑅𝑊) → (𝐹s 𝑅) = (Base‘𝑅) / 𝑣{⟨(Base‘ndx), ran 𝐹⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩}⟩})
115114, 70eqeltrd 2270 1 ((𝐹𝑉𝑅𝑊) → (𝐹s 𝑅) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1362   = wceq 1364  wcel 2164  wral 2472  Vcvv 2760  csb 3080  {csn 3618  {ctp 3620  cop 3621   ciun 3912  ran crn 4660   Fn wfn 5249  cfv 5254  (class class class)co 5918  cn 8982  ndxcnx 12615  Slot cslot 12617  Basecbs 12618  +gcplusg 12695  .rcmulr 12696  s cimas 12882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-mulr 12709  df-iimas 12885
This theorem is referenced by:  imasmulr  12892  qusval  12906  qusex  12908  xpsval  12935
  Copyright terms: Public domain W3C validator